26 April 2023

Avira | oem

Anti-malware SDK
ClientLibrary Guide (Unix)

Contents

10 o Yo [o3 1 oY o 1 3
IO B =T = [aT=

2 Compiling and running the example...........ccccooiiiimmmmrereeecceess e 3

2.1 Compiling the EXAMPIES......eeiiiiiie et e e e e e e e e e e e e e e e s et aa e e eaeeeaaan
2.2 RUNNING the @XaMPIES.... ..o e aaaaaaaaaaaans

3 SAVAPI Client Library........cccoiisnsss s 4
G T IS NV /N e I T1 1 =1 4= (o o SRR
G IS Y/ e 1] = o Y O EEER
3.3 SAVAPT SCANNING.cutteiieiitiie ettt e bt e e e e ah b et e e e e b et e e e e be e e e e e anbee e e s anbeeeeeeanees
3.4 SAVAPI SCaN CallDACKS.t e e e e e e e e
TR ANV /Y g I Tor= T] 1[0 1 SRR
3.6 SAVAPI 10g CalIDACK........eeiiiiiiiiii ittt e e e b e e s b e e e e b ee e e

4 Contact iNTOrMaAtioN......ccciieiiiieir e rea e reasrasrensrasrensrassensrnnnen 8
o IS T8 o] oo 4 =TT YTt PR
L 070] o] = (o1 SRR

- 1 Introduction

1 Introduction

1.1 Disclaimer

The purpose of these simple examples is to show basic functionality of the features as easy as
possible. There are no error checks, no log files, and very few console prints in order to preserve the
simplicity of the examples. Using code from these basic examples "as is", in a production environment
is not recommended. Instead, check the more advanced examples that are safer to use when
implementing SAVAPI.

@ Note On UNIX platforms, in order to use native UTF-8 char types, savapi_unix.h must be included
instead of savapi.h.

The SAVAPI Client Library basic examples are split into eight incremental complexity levels:

1. clientlib_basic_init_example - introduces initialization of SAVAPI Client Library; it doesn’t scan
files

2. clientlib_basic_instance_example - introduces the creation of SAVAPI instances; it doesn’t scan
files

3. clientlib_basic_scan_example - introduces scanning of a file using default settings and options,
without callbacks

4. clientlib_basic_scan_status_example - introduces callbacks implementation to check scan result

5. clientlib_basic_scan_options_example - introduces setting of basic scanning options

6. clientlib_basic_scan_callbacks_example - introduces the most important callbacks
implementation

7. clientlib_basic_log_callbacks_example - introduces logging callback

8. clientlib_basic_complete_example - introduces checking of return codes; the safest basic
example to be used in production code

2 Compiling and running the example

2.1 Compiling the examples

CMake is used as the build tool for the SAVAPI examples and must be installed before compiling them.
It allows to generate build files for various platforms and also build them using an installed toolchain.

To build the examples, navigate to an extracted SAVAPI SDK folder and run the commands below.
CMake will detect an available toolchain and a build tool, and then build the examples directly into the
SAVAPI SDK's / bi n folder.

Note: It is mandatory to pass to CMake <SAVAPI SDK>/examples folder as a source folder (i.e. "-S ../
examples" in this case).

mkdir examples build
cd examples build
cmake -S../examples —DPLATFORM_ARCH:${arch} —DCMAKE_BUILD_TYPE:${type}

Then to build all the examples run:

cmake --build .
Or to build a specific example pass its name to CMake like this:
cmake --build . -t lib file scan_example

Where:

- arch=[x64|x86|arm64]
- type=[Release|Debug]

Please refer to CMake documentation for more information.

SAVAPI 4 Client Library Guide 3

- 3 SAVAPI Client Library

Build files generated by CMake can be used separately with an IDE (for ex., Visual Studio), nmake,
make etc.

2.2 Running the examples

Because by default, the examples search for some modules that are located in the bin directory, they
must be executed from the bin directory.

Each example can run without arguments (the very basic ones) or will require one or two arguments,
depending on its complexity. By executing an example with no arguments, it will print its usage to the
console.

The possible arguments for basic examples are:
I i cense product id:License product ID, provided by Avira
file to scan: The file to be scanned

SAVAPI Client Library connects to a running SAVAPI daemon, therefore SAVAPI must be started before
running any client library example. In the following lines, SAVAPI is started on localhost, port 9999,
which are also the default values used in the examples.

cd /opt/savapi/bin
./savapi —--tcp=9999

./clientlib basic scan status_ example
SAVAPI Client Library usage in a basic scan with status answer example program
(c) Avira Operations GmbH & Co. KG 2016

Usage: <./clientlib basic scan status example> <license product id>
<file to_scan>

./clientlib basic scan status example 1 /tmp/eicar.com
SAVAPI initialize succeeded
SAVAPI create instance succeeded
File '/tmp/eicar.com' is infected!
malware name: Eicar-Test-Signature
malware info: Contains code of the Eicar-Test-Signature virus
SAVAPI scan succeeded

./savapi --tcp=9999 --stop

3 SAVAPI Client Library

3.1 SAVAPI initialization

Before most of the SAVAPI functions can be used, SAVAPI must be initialized using
SAVAPI _ini tialize(). This function takes a single parameter of type SAVAPI _GLOBAL_I NI T as
argument.

The needed important members of the SAVAPI _G_OBAL_ | NI T structure are:
api _maj or _ver si on: The minimum major API version expected
api _mi nor _ver si on: The minimum minor API version expected

Create and initialize the structure:

/* Declare a SAVAPI global object and set the required fields
* (license product id is only needed when scanning) */

SAVAPI GLOBAL INIT global init = {0};

global init.api major version = SAVAPI API MAJOR VERSION;

global init.api minor version = SAVAPI API MINOR VERSION;

In the basic examples, the license product ID is received as a program argument.

SAVAPI 4 Client Library Guide 4

- 3 SAVAPI Client Library

After creating the structure, call SAVAPI _initialize():

/* Initialize SAVAPI library */
ret = SAVAPI initialize(&global init);

SAVAPI is initialized now, more code can be added after the initialization.

Before exiting the program, SAVAPI must be uninitialized.

ret = SAVAPI uninitialize();

3.2 SAVAPI instances

In order to use SAVAPI scanning, one needs to create at least one SAVAPI instance. A program can
have many instances running at the same time, each instance having its own unique set of options.
Each instance usually has to be attached to a run time “worker thread” in the context of the running
program, and the user is responsible for all thread creation and management. For SAVAPI Client
Library, each instance is a new thread connected to SAVAPI service.

To create an instance, the user needs to call SAVAPI _creat e i nstance() and retrieve an instance
handle of type SAVAPI _FD. The instance handle is then used in subsequent calls to set options, scan
files, memory and hashes.

Set the instance to connect on IP address "localhost", port 9999, using TCP.

/* Declare objects to prepare the instance creation */
SAVAPI FD instance_handle = NULL;

SAVAPI_INSTANCE_INIT instance_init = {0};
instance_init.flags = SAVAPI_FLAG USE_TCP;

instance init.host name = "localhost";
instance_init.port = 9999;

/* Create the instance and return an instance handle that will be used to set
* different scanning options and scan files, memory or hashes */
ret = SAVAPI create_ instance(&instance_init, &instance handle);

All created instances should be destroyed by calling SAVAPI _r el ease_i nst ance() .

ret = SAVAPI release instance (&hInstance);

3.3 SAVAPI scanning

Once the instance has been created, it can be used to scan files, memory or hashes by calling
SAVAPI _scan() .

/* File to be scanned must be received as second argument */
char *file to scan = argv[2];ret = SAVAPI scan (hInstance, fileToScan);
ret = SAVAPI scan(instance handle, file to scan);

It is important to note that SAVAPI _scan() does not return until the scan operation is complete.

In order to scan multiple objects at the same time, it is therefore necessary to use threading, along
with multiple SAVAPI instances. Each instance must run in a different thread context. The developer
implementing SAVAPI in his application is responsible for maintaining the multithreaded code that
makes SAVAPI _scan() calls to the SAVAPI instances.

@ Note SAVAPI scan() does not return the status of the scan (clean or infected) but only a
success or failure code. In order for the user to get more granular results, it is necessary to implement
scan callbacks.

3.4 SAVAPI scan callbacks

SAVAPI uses callbacks during scanning to send information to the user. The callbacks can be
registered by calling SAVAPI _regi ster_cal | back() and are unique for each instance. All relevant
callbacks must be set on a SAVAPI instance before calling SAVAPI _scan() for that instance.

SAVAPI 4 Client Library Guide 5

- 3 SAVAPI Client Library

The most important callback is SAVAPI _CALLBACK_REPCRT_FI LE_STATUS, which contains
information about the file scanned. If the file is infected, there is additional information available about
the malware.

ret = SAVAPI register callback (hInstance,
SAVAPI CALLBACK REPORT FILE STATUS, FileStatusCallback);

The basic implementation of SAVAPI _CALLBACK _REPORT_FI LE_STATUS function is:

/* Triggered after a file is scanned, contains information
* about the file status (clean, infected etc.) */
static int file status_callback (SAVAPI CALLBACK DATA *data)
{
SAVAPI FILE STATUS DATA *file status data =
data->callback data.file status data;

if (file status data->scan_answer == SAVAPI SCAN STATUS INFECTED)

{
printf ("\tFile '$s' is infected!\n", file status_data->file info.name);
printf ("\tmalware name: $s\n", file status_data->malware info.name);
printf ("\tmalware info: %$s\n", file status_data->malware info.message);

}

return 0;

}

Once a callback has been registered, it must be unregistered by calling
SAVAPI _unregi ster_cal | back().

ret = SAVAPI unregister callback(instance handle,
SAVAPI CALLBACK REPORT FILE STATUS, file status callback);

Other important callbacks are:

- SAVAPI _CALLBACK PRE_SCAN - Triggered before the scanning begins. Can be used to create
filters. For example, if the user wishes to scan only .exe files, the user installs a PRE_SCAN
callback. Before any file is scanned, the PRE_SCAN callback is called. If the returned code is success
(SAVAPI _S_X), the file will be scanned, otherwise it will be skipped.

- SAVAPI _CALLBACK_ARCHI VE_OPEN - Triggered before an archive (e.g. ZIP, RAR, MIME encoded
files etc) is opened. If the returned code is success (SAVAPI _S (K), the archive will be opened,
otherwise it will be skipped.

- SAVAPI _CALLBACK PROGRESS REPORT - Triggered multiple times during a scan operation, when
messages related to the scan progress are available. Useful in a lengthy scan operation on a large
archive or file.

- SAVAPI _CALLBACK REPORT_ERROR - Triggered on errors encountered during a scan, i.e. damaged
files or archives etc. Also triggered on warnings encountered during a scan. Can be triggered at any
time during the scan.

3.5 SAVAPI scan options

SAVAPI has default scanning options for basic malware but in many cases additional options are
needed for optimal performance. For example, by default SAVAPI will not scan in archives, so

ARCHI VE_SCAN must be enabled. The options are set per instance, so different SAVAPI instances can
have different options set for them.

SAVAPI 4 Client Library Guide 6

¢

The options can be set by calling SAVAPI _set () .

3 SAVAPI Client Library

/* Enable the FPC module */
ret = SAVAPI set (instance handle, SAVAPI OPTION FPC, "1");

/* Enable archive scanning */
ret = SAVAPI set (instance handle, SAVAPI OPTION ARCHIVE SCAN, "1");

/* Set maximum allowed size (in bytes) for any file within an archive */
ret = SAVAPI set (instance handle, SAVAPI OPTION ARCHIVE MAX SIZE, "0");

/* Enable detection for all categories */
ret = SAVAPI set (instance handle, SAVAPI OPTION DETECT ALLTYPES, "1");

@ Note In order to have the best detection, it is highly recommended to enable the False Positive
Control module (set SAVAPI _OPTI ON_FPCto "1"). An Internet connection is needed for the FPC
module to work.

Also, by calling SAVAPI _get (), values of some specific options can be obtained.

char buf [BUF SIZE] = {0};
SAVAPI SIZE T buf size = BUF SIZE;

/* Get some instance options */
ret = SAVAPI get (instance handle, SAVAPI OPTION FPC, buf, &buf size);
printf ("False positive control: %$s\n", buf);

ret = SAVAPI get (instance handle, SAVAPI OPTION AVE VERSION, buf, &buf size);
printf ("Engine version: %s\n", buf);

ret = SAVAPI get (instance handle, SAVAPI OPTION VDF VERSION, buf, &buf size);
printf ("VDF version: %s\n", buf);

ret = SAVAPI get (instance handle, SAVAPI OPTION ARCHIVE SCAN, buf, &buf size);
printf ("Scan in archives: %s\n", buf);

Please note that SAVAPI _CAl LBACK_SCAN_DETAI LS _REPORT and
SAVAPI _CAl LBACK PROGRESS REPORT callbacks must be registered using SAVAPI _set ()
function.

/* Enable notifications of virus description URL
* (needed for SAVAPI CALLBACK SCAN DETAILS REPORT callback to trigger) */
ret = SAVAPI set (instance handle, SAVAPI OPTION NOTIFY ALERTURL, "1");

/* Enable scan progress messages

* (needed for SAVAPI CALLBACK PROGRESS REPORT callback to trigger) */
ret = SAVAPI set (instance handle, SAVAPI OPTION_ SCAN PROGRESS, "1");

3.6 SAVAPI log callback

The logging callback is one of the few SAVAPI functions that can be called before the SAVAPI Client
Library is initialized.

The user must implement his own logging callback function, that will be called anytime SAVAPI logs
something. In the example, a log file is created and filled with SAVAPI logging information.

/* Define a structure to be passed as user data to the log callback */
log user data t log user data = {0};
log user data.log file = fopen("savapi.log", "w");

/* Set the logging callback function (can be done before SAVAPI initialize) */
ret = SAVAPI set log callback(&log callback, SAVAPI LOG DEBUG, &log user data);

SAVAPI 4 Client Library Guide 7

- 4 Contact information

The logging function example below will append the messages received from SAVAPI to the savapi.log
file. SAVAPI will provide the message string, but time-stamping and output formatting are up to the
developer.

/* Triggered when SAVAPI logs a message */
static void log callback (SAVAPI LOG LEVEL log level,
const SAVAPI TCHAR *message, void *user data)

{
/* get the log file handle and write the message
* received from SAVAPI to the file */
log user data t *log user data = (log user data t*)user data;

/* retrieve the local time to be written in the log file */
time t local time = time (NULL);
struct tm *local tm = localtime(&local time);
if (local tm != NULL)
{
fprintf (log user data->log file, "%02d:%02d:%02d %s: %s\n",

local tm->tm hour, local tm->tm min, local tm->tm sec,
log level to string(log level), message);

}

Close the file handle before exiting the program.

/* Close the log file handle */
fclose(log user data.log file);

4 Contact information

4.1 Support services

During evaluation and integration

If you are evaluating or starting to integrate Avira's Technology into your solution, the System
Integration Team will answer your technical questions, from planning the architecture of the integration,
to detailed code-related routines.

To contact the Sl Team for technical issues, mailto:si-support@avira.com
After the integration is finalized

As soon as you finalize the integration of Avira's Technology and you release your solution to your
customers, the OEM Integration Support manages all support issues.

To contact the OEM Support Team for technical issues, mailto:oemsupport@avira.com
Partner Portal

For our OEM customers we also provide a login to our Partner Portal with all the latest news and
information about Avira's technology, SDK downloads, and documentation: https://oem-portal.avira.com

4.2 Contact
Address
Avira Operations GmbH
Kaplaneiweg 1
D-88069 Tettnang
Germany
Internet

You can find further information about us and our products on the website: www.avira.com

SAVAPI 4 Client Library Guide 8

mailto:si-support@avira.com
mailto:oemsupport@avira.com
https://oem-portal.avira.com
https://www.avira.com

Europe Americas Asia/Pacific and China Japan
Middle East, Africa

Avira Avira, inc Avira Pte Ltd Avira GK

Kaplaneiweg 1 c/o WeWork, 75 E Santa Clara Street 50 Raffles Place 8F Shin-Kokusai Bldg

88069 Tettnang, Germany Suite 600, 6th floor San José 32-01 Singapore Land Tower 3-4-1, Marunouchi Chiyoda-ku
Tel: +49 7542 5000 CA 95113 United States Singapore 048623 Tokyo 100-0005, Japan

© 2023 Avira Operations GmbH. All rights reserved. Avira. Kaplaneiweg 1, 88069 Tettnang, Germany oem.avira.com Product and company names mentioned herein are registered trademarks
of their respective companies. Our general terms and conditions of business and license terms can be found online: www.avira.com May be subject to errors and technical changes. As of: August 2019.

oem.avira.com

	Contents
	Introduction
	Disclaimer

	Compiling and running the example
	Compiling the examples
	Running the examples

	SAVAPI Client Library
	SAVAPI initialization
	SAVAPI instances
	SAVAPI scanning
	SAVAPI scan callbacks
	SAVAPI scan options
	SAVAPI log callback

	Contact information
	Support services
	Contact

