
9 June 2023

Anti-malware SDK  v.4.15
Cross Platform Documentation (SAVAPI)



 | Contents | ii

Contents

1 General considerations............................................................................. 5
1.1 Introduction...................................................................................................................................... 5

1.1.1 General features................................................................................................................ 5
1.2 System Requirements..................................................................................................................... 6

1.2.1 Limitations.......................................................................................................................... 7
1.2.2 Binary integrity................................................................................................................... 8

1.3 Integrating Anti-malware SDK (SAVAPI).........................................................................................8
1.4 Third-party libraries..........................................................................................................................8
1.5 Third-party license duties................................................................................................................ 8
1.6 Handling of containers/archives...................................................................................................... 9

2 Anti-malware SDK (SAVAPI) Library........................................................ 9
2.1 General description......................................................................................................................... 9
2.2 Library integration............................................................................................................................9

2.2.1 OnAccess file scanning..................................................................................................... 9
2.3 Library configuration...................................................................................................................... 10

2.3.1 File Operation Structure (FOPS)..................................................................................... 10
2.3.2 What is FOPS?................................................................................................................10
2.3.3 How to use FOPS: The SAVAPI_scan call..................................................................... 10
2.3.4 Library callbacks.............................................................................................................. 12

2.4 Logging.......................................................................................................................................... 14
2.4.1 Initialization...................................................................................................................... 14
2.4.2 Configuration....................................................................................................................14
2.4.3 Logging guidelines...........................................................................................................15
2.4.4 Malware name generation rules......................................................................................16

2.5 Selective file repair........................................................................................................................16
2.5.1 Steps................................................................................................................................ 16

2.6 Extracting malware names............................................................................................................17
2.6.1 Troubleshooting: "350 Failed to read VDF file"...............................................................17

2.7 File reputation API support........................................................................................................... 18
2.7.1 File Reputation extension caching.................................................................................. 19
2.7.2 File Reputation extension blackout mechanism.............................................................. 19
2.7.3 File Reputation extension hash scanning....................................................................... 19
2.7.4 Computing the File Reputation extension hash using the apchash library......................19
2.7.5 Scanning the hash with Anti-malware SDK (SAVAPI).....................................................20
2.7.6 Updating the File Reputation extension hash library.......................................................20
2.7.7 File Reputation extension scan callback......................................................................... 21
2.7.8 File Reputation extension quota......................................................................................23

2.8 Anti-malware SDK (SAVAPI) OnAccess........................................................................................24
2.8.1 Dependencies.................................................................................................................. 24
2.8.2 Object exclusions.............................................................................................................25
2.8.3 Updating OnAccess......................................................................................................... 26

2.9 FPC support.................................................................................................................................. 28
2.9.1 FPC blackout mechanism................................................................................................29

3 Anti-malware SDK (SAVAPI) Service......................................................30
3.1 General description....................................................................................................................... 30
3.2 Integration...................................................................................................................................... 31

3.2.1 On-demand file scanning.................................................................................................31
3.2.2 OnAccess file scanning................................................................................................... 31

3.3 Configuration..................................................................................................................................31



 | Contents | iii

3.3.1 Command line parameters.............................................................................................. 32
3.3.2 Configuration file options.................................................................................................37
3.3.3 Protocol............................................................................................................................ 55

3.4 Exit codes...................................................................................................................................... 70
3.5 Logging.......................................................................................................................................... 71

3.5.1 Initialization...................................................................................................................... 71
3.5.2 Configuration....................................................................................................................71

3.6 Non-disruptive service update.......................................................................................................74
3.7 Fops plug-in...................................................................................................................................74
3.8 Cloud component.......................................................................................................................... 75
3.9 OnAccess file scanning.................................................................................................................75

4 Anti-malware SDK (SAVAPI) Client Library........................................... 75
4.1 General description of Anti-malware SDK (SAVAPI) Client Library.............................................. 75
4.2 Integration of Anti-malware SDK (SAVAPI) Client Library............................................................ 76
4.3 Configuration of Anti-malware SDK (SAVAPI) Client Library........................................................ 76
4.4 Logging in Anti-malware SDK (SAVAPI) Client Library.................................................................76
4.5 Extracting malware names............................................................................................................76

5 Installation.................................................................................................76
5.1 Installation on Windows.................................................................................................................76

5.1.1 Installing the OnAccess driver.........................................................................................76
5.1.2 Installing the Anti-malware SDK (SAVAPI) Service.........................................................77

5.2 Installation on UNIX...................................................................................................................... 77

6 Licensing...................................................................................................77

7 Updating Anti-malware SDK (SAVAPI)...................................................78
7.1 Mirroring the Updater’s server structure....................................................................................... 79
7.2 Anti-malware SDK (SAVAPI) update structure and modules........................................................ 79

7.2.1 Updater related files........................................................................................................ 79
7.2.2 Introduction to Anti-malware SDK (SAVAPI) update....................................................... 80
7.2.3 Modules of the Anti-malware SDK (SAVAPI) update...................................................... 80
7.2.4 Anti-malware SDK (SAVAPI) update script details.......................................................... 80
7.2.5 How to use Anti-malware SDK (SAVAPI) update scripts................................................ 81
7.2.6 Limitations........................................................................................................................ 82

7.3 Avira Updater’s configuration parameters.....................................................................................82
7.3.1 General parameters.........................................................................................................82
7.3.2 Update mode................................................................................................................... 86
7.3.3 Connection settings......................................................................................................... 88
7.3.4 Notification emails............................................................................................................90

7.4 Avira Updater’s logging................................................................................................................. 91
7.5 Avira Updater's return codes.........................................................................................................92
7.6 xVDF files merging........................................................................................................................93

7.6.1 Merging the xVDF files using the xvdfmerge library....................................................... 93
7.6.2 Updating the xVDF merge library....................................................................................93

8 Contact information................................................................................. 93
8.1 Support services............................................................................................................................93
8.2 Contact...........................................................................................................................................94

9 Appendix................................................................................................... 94
9.1 Anti-malware SDK (SAVAPI) binaries........................................................................................... 94

9.1.1 The files for the Avira Updater........................................................................................ 94



9.1.2 UNIX.................................................................................................................................94



1 General considerations

1 General considerations

1.1 Introduction
The Anti-malware SDK cross-platform (Codename "SAVAPI") from Avira provides an interface to detect 
malware and repair infected files. The cross-platform engine behind the interface is based on the 
technology of Avira Operations GmbH.

The SAVAPI interface is written in C and can be compiled by any common C/C++ compiler on many 
operating systems. Our goal is to give third-party developers an opportunity to easily add antivirus 
functionality to their products. Typical applications include:

• Email gateways

• Desktop and server solutions

• www and ftp proxies

• Firewalls

• Backup applications

1.1.1 General features
Features Library Service Client Library (combo)

Communication over network
sockets

no yes yes

Configure Avira Engine
location

yes yes yes

Configure licence file location yes yes yes

Configure logging options yes (via API) yes (via command line or
configuration file)

yes

Configure network connection
properties

no yes (via command line or
configuration file)

yes (via API)

Configure scan options yes (via API) yes (via command line or
configuration file)

yes (via API)

Configure VDF location yes yes yes

Repair files in memory possible with user-
implemented FOPS

no no

Repair files on disk yes yes yes

Scan files in memory* yes no yes

Scan files on disk yes yes yes

Scan emails and mailboxes yes yes yes

Scan regular archives yes (disabled by default) yes (disabled by default) yes (disabled by default)

Scan threads management yes (must be implemented by
the integrator)

limited (only the number
of working threads can be
configured)

yes (must be implemented by
the integrator)

Report scan errors yes (via API) yes (via text based protocol) yes (via API

Report scan information
(warnings, info, progress)

yes yes yes

Report scan results yes (via API) yes (via text based protocol) yes (via API)

Extract the malware names
from memory to disk

yes yes no

Supervisor no yes yes (only for SAVAPI Service)

UNICODE support yes yes yes

User-implemented FOPS yes no no

Cloud file scanning yes yes no

OnAccess file scanning yes no no

Anti-malware SDK - Cross Platform (SAVAPI) 5



1 General considerations

 Note The structure used for scanning objects from memory uses the type: unsigned int for the
size of the object in memory. This limits the maximum size for a scanned object to approximately 4GB
(2^32) on most of the 64-bit systems.

 Note Even if it is enabled, APC will not be used when scanning objects from memory.

1.2 System Requirements
Supported OS and hardware platforms

The 32-bit SAVAPI version runs on the following platforms:

• Linux x86 32-bit (starting with glibc 2.12)

• Linux x86 64-bit (starting with glibc 2.12, if the 32-bit compatibility libs are installed on the system)

• Windows

The 64-bit SAVAPI version runs on:

• Linux x86 64-bit (starting with glibc 2.12)

• Linux arm64 (starting with glibc 2.17)

• macOS Universal binaries

• Windows x86 64-bit

• Windows arm64

 Note Proper functioning of SAVAPI is only guaranteed for operating systems versions that are in
official support of the corresponding platform vendor. This does not necessarily imply that SAVAPI does
not work on operating systems that are already end of life.

 Note On Windows systems, SAVAPI is statically linked with Visual Studio C runtime (CRT), so
there is no need of Visual C++ redistributable packages to run SAVAPI.

 Note On Windows systems, the SAVAPI OnAccess functionality is provided for both x86 32-bit
and 64-bit versions.

 Note On the Linux x86 32-bit platform, SAVAPI binaries can also run on systems with 64-bit inode
support.

 Note On the macOS platform, starting with version 4.12.0, all binaries are codesigned with
Apple Code Sign. This is a prerequisite for supporting the Apple app notarization requirements.
The integrator has to codesign SAVAPI binary files with his own certificate, before submitting the final
package to Apple's app notary service. As a consequence, the engine and VDF files are not delivered
as part of the SAVAPI package.

Until SAVAPI version 4.13 (included), the integrator must not try to codesign engine files with his own
certificate and must not include engine and VDF files into the final package.

Starting with macOS 10.15, Apple enforced library validation which requires that all libraries loaded into
the address space of the caller process are signed with the same team ID. Therefore, starting with the
SAVAPI version 4.14, the integrator must codesign SAVAPI and related libraries, as well as the engine
files to meet these requirements.

Additionally, a predefined avira.entitlements file is provided in SAVAPI package on macOS platform.
This entitlement file was used to codesign the SAVAPI daemon executable. It can be used by the
integrator to codesign the SAVAPI daemon or other executables with his own certificate. It is important

Anti-malware SDK - Cross Platform (SAVAPI) 6



1 General considerations

to note that com.apple.security.cs.disable-library-validation key must always be
defined in avira.entitlements. This is because the engine binary files will always be codesigned
with Avira's certificate. For more details on Hardened Runtime Entitlements, please visit: https://
developer.apple.com/documentation/security/hardened_runtime_entitlements.

Minimum system requirements (for SAVAPI Service)

• 32-bit or 64-bit CPU, min. 1.6 GHz

• 512 MB RAM (exclusively for SAVAPI)

• 1 GB HDD space (needed for unpacking archives)

 Note The system requirements depend on how your application is using SAVAPI. The suggested
values are computed for the service default values. If the application that uses the SAVAPI Service
modifies the default configuration, the requirements will be different.

On UNIX systems, the gnu-make file is required in order to use makefiles and to build the example
solution included in the package.

On Windows systems, Visual Studio 2017 is required in order to build the example solution included in
the package.

1.2.1 Limitations
• SAVAPI imposes a limit of 300 scan threads that can run in parallel. The best performance is

generally reached when 1 or maximum 2 threads per processing unit (CPU core) are used.
However, multiple threads per processing can be used in most of the situations, because the scan
performance is mostly influenced not by the processing power but by the I/O operations. As there
is no formula to calculate the optimal threads per processing unit number for all possible scenarios,
SAVAPI integrators should try different setups and decide which one fits the environment better. The
default values were chosen based on generic tests and they might not always be the best option.

• Based on stress tests under several versions of Windows, we do not recommend creating more
than 10 connections per second in parallel to SAVAPI. This limitation has been observed while
creating and destroying many connections (each connection created to scan a single file). Microsoft
introduces a few new TCP/IP settings, starting with Windows XP SP2, in order to "reduce the threat"
of worms spreading fast without control. The number of possible TCP connection attempts per
second is limited to a certain amount. This behavior may deny the connection to the server for
some scanning clients, causing instability in both client and server (because of the so-called "half
connection" - connected, but not accepted by the service).

• On UNIX systems, the opened files limit (ulimit -n) is very important for SAVAPIbased
applications. The open files limit is shared between SAVAPI instances. If the limit is too low, it may
happen that scan errors or failed connection errors are reported. The higher the archives' recursion
level, the more open files will be used during the archive processing. The recommended value for
the open files limit is: archive_max_rec * poolscanners.

• On Windows systems, the maximum length allowed for a path is 260 characters. ASCII software
cannot access longer paths. UNICODE software accepts paths that are 32767 characters long,
where the path must have the "\?\" prefix. On Windows 10, the prefix is added internally by the OS
libraries, if needed. On older Windows versions the prefix must be added by the developer. This is
one limitation of the Windows operating system. Further information can be found on MSDN.

 Note SAVAPI real-time scanning is available on Windows x86 platforms. SAVAPI does not
provide any anti-adware or anti-spyware features. SAVAPI does not provide any registry protection
features. SAVAPI is not a dedicated anti-rootkit product; it offers only basic anti-rootkit detection via
VDF signatures.

Anti-malware SDK - Cross Platform (SAVAPI) 7

https://developer.apple.com/documentation/security/hardened_runtime_entitlements
https://developer.apple.com/documentation/security/hardened_runtime_entitlements
https://docs.microsoft.com/en-us/windows/desktop/FileIO/naming-a-file


1 General considerations

1.2.2 Binary integrity
SAVAPI binaries undergo an integrity check during initialization. Any modification of the binaries will
result in failures during load and initialization will exit with an error. For Windows, modifications to the
files caused by Authenticode signing (adding, removing, replacing, appending signatures) will not affect
the integrity check.

To further secure the files, it is recommended to place them in a trusted location with restricted file
permissions, as the system loader works with file paths and the files can potentially be replaced
between validation and usage.

 NoteOn macOS systems, SAVAPI binaries undergo Code Signing to guarantee compatibility with
the operating system. The integrator is free to resign the files with its own certificate.

1.3 Integrating Anti-malware SDK (SAVAPI)
SAVAPI provides more interfaces and modes of use to the customers. These modes allow the
customers to integrate SAVAPI according to their needs. The figure below illustrates each of the three
modes, highlighting possible ways to interact with SAVAPI.

The following chapters present these modes, some recommended usage scenarios and advantages for
every SAVAPI mode:

• Chapter 2. Anti-malware SDK (SAVAPI) Library

• Chapter 3. Anti-malware SDK (SAVAPI) Service

• Chapter 4. Anti-malware SDK (SAVAPI) Client Library

1.4 Third-party libraries
The third-party libraries and their license files are listed in the legal folder of the package.

1.5 Third-party license duties
Most third-party software ("TPS") licenses are granted under certain terms and conditions that have
to be accepted by anyone using their software and/or passing the TPS on to others. Sometimes it is
sufficient to provide the user or the receiving party of the TPS the license text, the access to the source
code, copyright notices and legal disclaimer, and mention the usage of the third-party libraries and the
connected obligations in the documentation.

However, since there are very diverse usage and integration scenarios of the SDK possible and the
third-party licenses are licensed under very different terms and conditions, we strongly recommend to

Anti-malware SDK - Cross Platform (SAVAPI) 8



2 Anti-malware SDK (SAVAPI) Library

check each third party and the corresponding license (text) with a competent and skilled counsel to
ensure you comply with the requirements and to not infringe any intellectual property rights.

The materials of the third-party licenses can be found in the .\legal folder of the SDK package.

1.6 Handling of containers/archives
To understand how containers are scanned, one must know that they are divided into two main
categories:

• Native containers are "normal" archives that most of end-users are aware of. Examples: zip,
tar, rar.

• Non-native containers are special archives that look like one single file to the common users.
Examples: pdf, installers, packers.

While the scanning of Native containers can be controlled by the user (e.g. via ARCHIVE_SCAN
options), Non-native containers are always opened and scanned to ensure complete detection.
If speed is more important than the detection accuracy (e.g. OnAccess context), one can overwrite this
behavior through the SAVAPI_CALLBACK_ARCHIVE_OPEN callback.

2 Anti-malware SDK (SAVAPI) Library

2.1 General description
SAVAPI Library is a cross-platform library that allows the customer to initialize the scan engine,
configure its options and scan a file. The functionality is exposed through an API written in C language.

The application based on SAVAPI Library must either load the library on runtime or link with the library
at compile time; then call the library API to perform initialization, configuration, scanning, etc.

The application is also responsible for maintaining the scan jobs, creating threads to scan, allocating
data, terminating the instances and uninitializing the library. If the customer wants to have complete
control over these resources, then he should opt for SAVAPI Library mode.

2.2 Library integration
The client-designed applications should link to the SAVAPI Library (either implicit or explicit) and use
the SAVAPI Library API to access the SAVAPI technology. The SAVAPI Library API allows the user to
configure the scan engine and other SAVAPI options, to process files and retrieve information about the
processing status. For more details, please refer to the API documentation.

A very simple example of how one can use the SAVAPI Library is offered in the SAVAPI SDK kit. (You
can refer to the SDK documentation under doc/README.)

2.2.1 OnAccess file scanning

 Note This functionality is available only on Windows systems.

 Note Terms introduced: OnAccess file scanning, SAVAPI OnAccess

Starting with version 4.4, SAVAPI offers OnAccess file scanning. This feature brings a new SAVAPI
module, SAVAPI OnAccess.

In order to use SAVAPI’s OnAccess file scanning capability, additional virtual driver files and runtime
libraries need to be installed, as well as a valid SAVAPI OnAccess product license. The needed files
(virtual drivers, runtime libraries), as well as an install/uninstall command line script are available in the
SAVAPI package. Without those, SAVAPI will only provide on-demand file scanning.

Anti-malware SDK - Cross Platform (SAVAPI) 9



2 Anti-malware SDK (SAVAPI) Library

2.3 Library configuration
The SAVAPI Library can be configured through the API. In order to set an option, the customer will just
have to call the SAVAPI_set() function with the appropriate parameters.

2.3.1 File Operation Structure (FOPS)
Avira Engine’s FOPS is a mechanism which allows any SAVAPI client to implement a special method
of scanning objects, other than files, on disk. Obviously, the name of the feature shows that its origin
is file-related (File OPS), but it is possible to implement almost any access method, as long as the
interface is correctly implemented.

If the user wants to process a different kind of data, other than files (an I/O stream for example), he
can implement his own File Operation Structure (FOPS) and provide it to SAVAPI Library. FOPS is a
collection of functions that give the SAVAPI Library access to the desired user data. The user would
not be able to scan this data only with SAVAPI Service, nor with the SAVAPI Service + SAVAPI Client
Library combo.

Real implementations of the FOPS include, but are not limited to:

• Implementing scanning on an encrypted file system – The application which uses the SAVAPI
Library implements the logic for reading and writing in the encrypted file system, allowing the engine
to read the files as if they were normally stored (without encryption).

• Implementing scanning on memory streams – The application is closely integrated with a server
(email, file, http) which processes its data in memory, receiving the files as streams.

2.3.2 What is FOPS?
The FOPS structure is a collection of I/O routines which are usually used to access files on a normal
disk, having a standard File Allocation Table. These routines are organized in an array of pointers to
functions.

 Note The order in this array must be kept exactly as in the examples in the SDK.

Each function receives certain parameters, depending on the function type.

AVE_FOPS engine_fops =
{ my_open,my_close,my_read,my_write,my_tell,my_seek,my_getfattr,my_s
etfattr,my_getfsize,my_unlink,my_rename,my_access,
my_malloc,my_free,my_gets,my_puts,my_getc,my_putc, my_ungetc, my_flush,
my_get_last_error };

 Note It is mandatory that all functions are defined. Do not simply add a NULL instead of a pointer.
Doing so will make the engine abort its initialization.

The engine uses such functions to process any object, right after the SAVAPI_scan function is called.
Internally, there is such a structure already implemented, having an implementation similar to the
functions in the two examples provided with the SDK (but not the same). The two examples are fully
functional, but simplified in order to allow an easy understanding of the process.

Having such a structure in place and allowing the user to change it at any time, SAVAPI has to make
sure to differentiate between “normal” engine operations (like opening the VDF files and creating or
deleting temporary files) and the object scanning operations. The engine needs the normal FOPS for
the first category because these files must always reside on disk (a RAM Disk is also considered a
disk). The second category, representing the objects which must be scanned, have to be accessed
using the user’s FOPS.

2.3.3 How to use FOPS: The SAVAPI_scan call
Once the SAVAPI_set_fops is called with a pointer to the structure defined above, the engine will
dynamically use one of the two FOPS structures, depending on the context.

This function requests the engine to scan an object.

Anti-malware SDK - Cross Platform (SAVAPI) 10



2 Anti-malware SDK (SAVAPI) Library

If you scan a file on disk, the second parameter is the filename, so no further information is required.

If you scan an object or a stream, there are some things which have to be specially configured.

The entire idea is to provide to the FOPS::open function enough information to access the object
referenced by the second parameter of the SAVAPI_scan function (file_name parameter). Since this
is a character buffer, you have to write somehow the address and the size of the memory area where
the object to be scanned resides.

For example, you could use a string like this:

SAVAPI_scan(&inst,“0xAddress,size,Filename.ext”)

Where “0xAddress” represents the address of the pointer to the memory area where the object
resides and the “size” is the size of the memory area. If you provide the “Filename.ext” parameter,
the engine is going to be able to make some assumptions based on the file type and from case to case
perform deeper analysis on the object.

This means that the open function which has the prototype

int fops_open (FOPS_HANDLE *fh, void *filename, int mode, void
*file_context, void *fops_context)

receives the following information:

FOPS_HANDLE *fh : undefined

You have to allocate this according to your needs. For example, having the value given above, you
must save the address and the size. Later on, you have to convert this address to a valid pointer.

Struct MyFH
{
void* addr;
long size;
}

Do not forget to allocate your FOPS Handle structure:

MyFH* myfh = (MyFH)malloc(sizeof(MyFH)); 
… do processing here … 
*fh = (void*)myfh;

1. First extract the “address” and the “size” from the “filename”.
2. Convert the hexadecimal string into an int

int32 address = convertHexStringToInt32( “0xaddress”); 
// you must write your own conversion function to a safe type 
// (32 and 64 bits, depending on architecture)

Assign to the file handle pointer the value

fh->addr = (char*)address; 
fh->size = size;

 Note This is just a simplified example which is not safe and probably not cross-platform.

void *filename: “0xAddress,size,filename.ext”

This is the file name provided in the SAVAPI_scan function. Extract the address and the size and use
them to allocate the “fh”

int mode : 0 (OPEN_RO) 
void *file_context: undefined or NULL – ignore this value 
void *fops_context: the same value you defined when you called 
SAVAPI_set_fops

 Note The handle that was allocated in the open function must be released in the close function.
It is possible that the open function will be called multiple times for the same file. The close function

Anti-malware SDK - Cross Platform (SAVAPI) 11



2 Anti-malware SDK (SAVAPI) Library

will also be called multiple times, corresponding to the number of open calls, for the same handle. In
the function getfsize where you have to return the size, just return fops->size.

2.3.4 Library callbacks
The scanning of malware files is a very complex and time consuming task, especially when malware
is found in multiple archives layers scenarios. When scanning archives, a recursive scan is used:
archives in archives are also unpacked and scanned for viruses and unwanted programs. The files are
scanned, decompressed and scanned again. During the scan the SAVAPI Library communicates with
the partner code by using a range of callbacks. Callbacks inform or trigger application specific actions.
They represent user defined, registered C functions that must obey the SAVAPI_CALLBACK structure
as defined in the header file savapi.h.

To use these callbacks, they have to be registered before performing a scan operation by using the
function SAVAPI_register_callback. The callbacks are instance specific and chaining is not supported.
If such a behavior is nonetheless required, an appropriate mechanism should be implemented and
managed by the application. However, when they are of the same user defined code, a callback can be
registered multiple times, for different callback IDs.

At run-time, the function determines exactly in what context it was called by checking the callback type
defined in the SAVAPI_CALLBACK_DATA structure from the same savapi.h. If no callback is registered
for a certain ID it will be silently ignored.

SAVAPI Library callbacks can be triggered multiple times in an unpredictable order depending on the
scanned content. The overall scan process including the callback triggers is depicted by the following
graphic:

The callback types are the following:

• SAVAPI_CALLBACK_PRE_SCAN: triggered right before scanning. It is useful to create file filters
based on the file information provided by data parameter

• SAVAPI_CALLBACK_ARCHIVE_OPEN: asks the application if it should open and scan an archive

• SAVAPI_CALLBACK_PROGRESS_REPORT: informs the application periodically about the scan
progress

• SAVAPI_CALLBACK_CONTENT_REPORT: reports various types of information, e.g. detection of I-
frames

• SAVAPI_CALLBACK_SCAN_DETAILS_REPORT: informs the application about some scan related
details, like detected malware or, if infected content is reparable

• SAVAPI_CALLBACK_REPORT_ERROR: informs about encountered errors and warnings

• SAVAPI_CALLBACK_REPORT_FILE_STATUS: reports the evaluation of the scanned file, e.g. if it
is clean or infected, if the malware name is applicable etc.

Anti-malware SDK - Cross Platform (SAVAPI) 12



2 Anti-malware SDK (SAVAPI) Library

From the above described callbacks only SAVAPI_CALLBACK_PRE_SCAN and
SAVAPI_CALLBACK_ARCHIVE_OPEN can alter the SAVAPI Library’s internal execution path through
internal return codes as follows:

• SAVAPI_CALLBACK_PRE_SCAN If the returned code is success (SAVAPI_S_OK), the file will be
scanned, otherwise it will be skipped.

• SAVAPI_CALLBACK_ARCHIVE_OPEN If the returned code is success (SAVAPI_S_OK), the
archive will be opened, otherwise it will be skipped from scanning.

The other callbacks are purely informative and any return code from them is silently discarded.

Examples

Although the order of callbacks is not guaranteed and depends on the scanned content, here
are some callback examples for the scanning of various file types, using the EICAR test file. The
lib_basic_complete_example was used to generate the following outputs:

• eicar.com

PRE_SCAN callback called for file 'eicar.com'
  file type: regular file
  archive recursion level: 0
FILE_STATUS callback called for file 'eicar.com'
  scan answer: infected
  File 'eicar.com' is infected!
  malware name: Eicar-Test-Signature
  malware info: Contains code of the Eicar-Test-Signature virus
FILE_STATUS callback called for file 'eicar.com'
  scan answer: finished`

1. PRE_SCAN is triggered before scanning begins. This function must return 0 in order to continue,
otherwise the scan will be aborted.

2. FILE_STATUS is triggered with answer "infected", reporting that malware is found.
3. FILE_STATUS is triggered with answer "finished", reporting that the scan is finished.

• eicar.zip ("eicar.com" archived)

PRE_SCAN callback called for file 'eicar.zip'
    file type: regular file
    archive recursion level: 0
ARCHIVE_OPEN callback called for file 'eicar.zip'
    file type: archive file
    archive recursion level: 0
PRE_SCAN callback called for file 'eicar.com'
    file type: file inside archive
    archive recursion level: 1
FILE_STATUS callback called for file 'eicar.com'
    scan answer: infected
    File 'eicar.com' is infected!
    malware name: Eicar-Test-Signature
    malware info: Contains code of the Eicar-Test-Signature virus
FILE_STATUS callback called for file 'eicar.com'
    scan answer: finished
FILE_STATUS callback called for file 'eicar.zip'
    scan answer: finished

1. PRE_SCAN is triggered before scanning of "eicar.zip" begins. This function must return 0 in order to
continue, otherwise the scan will be aborted.

2. ARCHIVE_OPEN is triggered before "eicar.zip" file is decompressed. This function must return 0 in
order to continue, otherwise the scan will be aborted.

3. PRE_SCAN is triggered before scanning "eicar.com" (the file inside "eicar.zip"). This function must
return 0 in order to continue, otherwise the scan will be aborted.

4. FILE_STATUS is triggered with answer "infected", reporting that a malware is found in "eicar.com".
5. FILE_STATUS is triggered with answer "finished", reporting that the scan for "eicar.com" is finished.
6. FILE_STATUS is triggered with answer "finished", reporting that the scan for "eicar.zip" is finished.

Anti-malware SDK - Cross Platform (SAVAPI) 13

https://www.eicar.org


2 Anti-malware SDK (SAVAPI) Library

• eicar_encrypted.zip ("eicar.com" archived with password)

PRE_SCAN callback called for file 'eicar_encrypted.zip'
    file type: regular file
    archive recursion level: 0
ARCHIVE_OPEN callback called for file 'eicar_encrypted.zip'
    file type: archive file
    archive recursion level: 0
PRE_SCAN callback called for file 'eicar.com'
    file type: file inside archive
    archive recursion level: 1
ERROR callback called for file 'eicar_encrypted.zip'
    error occured during scan, code: 25
FILE_STATUS callback called for file 'eicar.com'
    scan answer: finished
ERROR callback called for file 'eicar_encrypted.zip'
    error occured during scan, code: 28
SAVAPI_scan failed with error code: 25

1. PRE_SCAN is triggered before scanning of "eicar_encrypted.zip" begins. This function must return
0 in order to continue, otherwise the scan will be aborted.

2. ARCHIVE_OPEN is triggered before "eicar.zip" file is decompressed. This function must return 0 in
order to continue, otherwise the scan will be aborted.

3. PRE_SCAN is triggered before scanning "eicar.com" (the file inside "eicar.zip"). This function must
return 0 in order to continue, otherwise the scan will be aborted.

4. ERROR callback is triggered because the archive is encrypted (error 25, SAVAPI_E_ENCRYPTED).
5. FILE_STATUS is triggered with answer "finished", reporting that the scan for "eicar.com" is finished.
6. ERROR callback is triggered reporting that the scan was not finished (error 28,

SAVAPI_E_INCOMPLETE).

For more details, see API documentation and examples in the SAVAPI package.

2.4 Logging

2.4.1 Initialization
In order to receive the messages logged by the SAVAPI Library, you need to have a special callback
function. The function must have the following format:

void(*SAVAPI_LOG_CALLBACK) (SAVAPI_LOG_LEVEL log_level, const SAVAPI_TCHAR
*message, void *user_data);

The function's parameters are described in the SAVAPI Library API.

Besides the function's header, there are no restrictions about the implementation.

The function must be registered in the SAVAPI Library with the following function:

int SAVAPI_EXP SAVAPI_set_log_callback(SAVAPI_LOG_CALLBACK log_fct,
SAVAPI_LOG_LEVEL min_level, void *user_data);

 Note This function can be called without initializing the library. The function's parameters are
described in the SAVAPI Library interface section.

2.4.2 Configuration
The logging mechanism can be configured using the SAVAPI_set_log_callback function. The
min_level parameter will set the minimum log level of the messages received through the registered
callback. All logs from higher levels will be logged. The DEBUG level has the highest verbosity and the
ERROR level has the lowest verbosity.

 Log-levels

In decreasing order:

Anti-malware SDK - Cross Platform (SAVAPI) 14



2 Anti-malware SDK (SAVAPI) Library

SAVAPI_LOG_DEBUG – this is the most verbose log level; messages on this level will contain low level
information, such as:

• details about the initialization and un-initialization of SAVAPI Library

• details about the creation and release of instances

• information about interface function behavior

SAVAPI_LOG_INFO – messages on this level will contain information about the general workflow of the
library such as:

• key stages of the initialization and un-initialization

• key stages in the creation and release of library's instances

SAVAPI_LOG_WARNING – messages on this level will contain information about unexpected but
recoverable errors that will not stop the execution of the library or of its functions. For example:

• invalid product ID given in the initialization structure

• VDF files are older than two weeks

SAVAPI_LOG_ALERT– messages on this level will contain information about alerts that have been
raised during runtime. For example:

• malware was found while scanning a file

SAVAPI_LOG_ERROR – this is the least verbose log level; messages on this level will contain
information about unrecoverable errors that occur during runtime, in one of the library's functions. All
error logs will contain a short description of the action that failed, followed by the error code, and the
error's description.

If you want to stop the logging of the SAVAPI Library, the SAVAPI_set_log_callback function
must be called with NULL as the log_fct parameter. Also, if the log function or the minimum log-level
needs to be modified, the same function can be called again with the new configuration.

In addition, the user_data parameter grants the user freedom to send any necessary information to
the callback function. Usually this parameter contains a user-defined structure with multiple fields. For
example:

• The log file name or the log file descriptor which can be used by the log callback to write the logs
inside the respective file

• Information about the running instance number: in a configuration that uses multiple scanning
instance, the log messages can be divided between multiple files or have different formats for a
better tracking of their thread source

• Counters for the number of errors or alerts found in a running session

• Counters for the number of infected files found

2.4.3 Logging guidelines
The logging mechanism allows you to receive feedback about the library's activity and performance. It
should be started before the initialization of the SAVAPI Library, in order to log any possible errors.

The setting of the minimum log level determines the amount of log messages that will be received by
the log callback. If the log level is set to the minimum level (SAVAPI_LOG_DEBUG), the application's
performance may be affected, because of the increased number of disk write-accesses that are
performed during the writing of the log messages into the log files. This level should only be used
to track and debug issues. For example: After receiving an unexpected error, the behavior can be
reproduced on this level and you may be able to track the source of the problem or give a more
detailed feedback to the Support team.

In order not to affect the application's performance, the following log level configurations are
recommended:

Anti-malware SDK - Cross Platform (SAVAPI) 15



2 Anti-malware SDK (SAVAPI) Library

SAVAPI_LOG_INFO – Should be the default setting. It offers all available information about the
unexpected events (alerts, errors, warning) and keeps track of the key stages in the initialization
workflow.

SAVAPI_LOG_ERROR – If the application's workflow is not important, or if the application is stable
enough not to worry about unexpected events such as warnings and alerts, this level will guarantee
minimum feedback and maximum performance.

2.4.4 Malware name generation rules
In case of malware detection in the scanned items, SAVAPI returns some information about the
identified malware. This information is based on the return code of the scan engine, following the rules
Avira virus names are structured.

The following example shows the basic structure of such a name:

PREFIX/SUFFIX.MALWARENAME.VARIANT

The Avira virus names are built of 4 possible elements, that are:

*prefix

*suffix

*malware name

*variant

The combination of prefix, suffix, malware name and variation is also called signature identifier.

Prefixes are used to categorize malware. In case of malware detection, the prefix is used to match a
specific and accurately formulated malware information notice. This notice offers the user details about
the category / class the virus / code belongs to.

This malware notice will show the prefix in its expanded form together with the malware name (if
existing).

The "." (dot) separates the malware name from possible variations of this malware.

To get a valid virus detection name, the prefix and the suffix have to be delimited with "/" (slash).

The suffix is only added to malware categories that have a quite static behavior. The following are
examples for names:

TR/Spy.Zbot.XXX

TR/Dldr.Agent.XXX

Prefixes are always written in capital letters or should be converted to capital letters by the application.
The signature identifier must not be longer than 21 characters and must not contain any spaces. The
variant is an incremented combination of letters and/or numbers.

All newly detected malware is built on the above mentioned structure. As a basic rule, a valid Avira
virus name has to contain at least the "/" and one "." as delimiters.

Since some definition list entries belong to older virus names, most likely old DOS viruses, not all
names have the "/" as delimiter or not a valid prefix either.

2.5 Selective file repair
You can check if a file is repairable and start a repair attempt:

 Note Please note that files contained in archives or other containers cannot be repaired, unless
the application itself unpacks the contents and provides the files to SAVAPI one by one. In this case it is
the application's responsibility to pack the contents again.

2.5.1 Steps
1. Set SAVAPI_OPTION_REPAIR to 1. With this option enabled, and if SAVAPI detects during the scan

that a file contains a removable malware, it will automatically attempt to repair it.

Anti-malware SDK - Cross Platform (SAVAPI) 16



2 Anti-malware SDK (SAVAPI) Library

2. Scan the file. In case of an infection, the callback for SAVAPI_CALLBACK_REPORT_FILE_STATUS
is triggered.

3. When SAVAPI_FILE_STATUS_DATA callback is triggered, and if the field
SAVAPI_FILE_STATUS_DATA.malware_info.removable has the value 1, then the file is
repairable. SAVAPI_CALLBACK_REPORT_FILE_STATUS is triggered again to signal that the scan
has finished (with this call, the repairable field will be reset to 0). If the repair fails, the callback for
SAVAPI_CALLBACK_REPORT_ERROR is triggered with the error SAVAPI_E_REPAIR_FAILED.

2.6 Extracting malware names
The VDF files, which are loaded in memory to improve scan performance, contain various information
needed to detect malware. However, the malware names are only needed in the rare event of
detections/ alerts. In order to reduce active memory load, SAVAPI can extract the malware names from
memory and dump them to disk.

To extract malware names, call the following function, only after the engine is successfully
loaded (i.e. with a call to SAVAPI_ininitialize, SAVAPI_reload_engine or
SAVAPI_reload_engine_ex):

int SAVAPI_EXP SAVAPI_extract_malware_names(const SAVAPI_TCHAR *dir_path);

In the provided directory path, the function creates a file in which the malware names are extracted. By
default, if no directory path is provided, the function uses the system temporary directory.

Ensure that SAVAPI has the appropriate permissions to create the file and that there is enough free
disk space (approximately 100MB).

The filename uses the following naming scheme:

AV-malware-names-<process-PID>-<6 random chars>

To retrieve the file path, use the SAVAPI_get() function, with the option
SAVAPI_OPTION_MALWARE_NAMES_FILE.

The function enables malware names extraction only for the current engine. For every new
loaded engine (e.g. after an Update) the function has to be called again. Every function call
creates a different file, which is deleted when the engine is unloaded (i.e. with a successful call to
SAVAPI_unininitialize, SAVAPI_reload_engine or SAVAPI_reload_engine_ex).

SAVAPI can only extract the malware names after SAVAPI has been fully initialized and completely
loaded into memory (including the malware names). This means, if SAVAPI is using the malware
names extraction feature, it needs the same amount of memory for startup and initialization, no matter
whether the extraction function is used or not.

After extracting the malware names, the SAVAPI memory load is reduced with approximately 60 Mb.
The reduced memory load may be visible or not, depending on the platform policies regarding freed
memory caching. Usually on UNIX, the freed memory is kept in the process address space, until it is
explicitly requested by kernel to be used for other processes. However, this freed memory is available
for SAVAPI to reuse for other operations, like scanning.

 Note Using the malware names extraction function increases the I/O load, which might have a
slight impact on the performance, in case of a higher amount of detections/ alerts. Once the malware
names were extracted, they cannot be relocated back in memory, without re-initializing/ reloading
SAVAPI. Malware names extraction is an optional SAVAPI feature. By default SAVAPI will run with
malware names loaded in memory.

For more information about this feature, see the documentation of SAVAPI Library API.

2.6.1 Troubleshooting: "350 Failed to read VDF file"
Since the malware names file is needed by SAVAPI, it is recommended not to alter it. If the file is
deleted, moved or its content is modified, the engine may be unable to find the names of the viruses.

If the file has been altered, when the SAVAPI_scan() function processes an infected file for the first
time, it does not report the virus(es); it triggers two error-callbacks (with the SAVAPI_E_VDF_READ and
SAVAPI_E_INCOMPLETE codes) and it returns the SAVAPI_E_VDF_READ error code.

Anti-malware SDK - Cross Platform (SAVAPI) 17



2 Anti-malware SDK (SAVAPI) Library

Subsequent SAVAPI_scan() calls would trigger an error-callback (with the SAVAPI_E_VDF_READ
code) and would return the SAVAPI_E_VDF_READ error code, no matter if the file was infected or not.

Furthermore, apart from the error-callbacks, the SAVAPI_scan() also triggers log callbacks,
containing explicit error messages.

In order to fix the problem, please release the instance and reload the engine, or perform a new library
initialization.

2.7 File reputation API support
File reputation API has also the codename "APC", where APC stands for Avira Protection Cloud.
Starting with version 4.0, the SAVAPI suite offers support for scanning files with APC. Users can
improve their malware detection rate by performing additional scan processes on the Avira servers.
This enables users to doublecheck suspicious files, if their local Antivirus engine considers the files
to be safe. An overview of how the system operates, is shown in the graphic below: Avira Protection
Cloud SDK.

• (1) The application scans a suspicious file (’clean’ executable) on a computer.

• (2) The file’s fingerprint is extracted and sent to Avira Protection Cloud for review.

• (3) The fingerprint is compared with those that have previously been analyzed by the Protection
Cloud.

This progress can have two outcomes:

• (A) The fingerprint belongs to a file that has been previously analyzed by the Avira Protection Cloud.
It is immediately labeled as either clean, or malware.

• (B) The fingerprint is new to the Avira Protection Cloud. The complete file is uploaded to the
Protection Cloud, thoroughly examined and judged as clean or malware.

• (4) Avira Protection Cloud sends the status of the fingerprint, clean or malware, to the application
(SAVAPI) on the user’s machine

• (5) If the file is classified as malware, SAVAPI will handle the threat.

 Note For the fingerprint check and upload, the Protection Cloud supports PE and non-PE files and
a comprehensive dynamic list of other file types, which will be communicated by other means.

Anti-malware SDK - Cross Platform (SAVAPI) 18



2 Anti-malware SDK (SAVAPI) Library

 Note For systems that use a proxy to connect to the Internet, the proxy address is read from
one of the following sources, presented in the order of their priority: the configuration file of SAVAPI,
Internet Explorer settings (for Windows systems only), Winhttp settings (for Windows systems
only), environment variables: https_proxy, HTTPS_PROXY, http_proxy, HTTP_PROXY, all_proxy.
ALL_PROXY.

For more information about this feature, see the documentation of SAVAPI Library API.

2.7.1 File Reputation extension caching
In order to increase the scanning speed and to save bandwidth, the Avira Protection Cloud includes
cache support, meaning that it transparently stores data in memory, so that future requests for the
same data can be served faster. The size of the cache greatly affects the time needed by the APC to
finish processing the request. The more size available, the more data can be stored and used later,
thus for high-intensive applications, a bigger value is recommended.

The default memory size for the cache is 5 MB.

When exiting SAVAPI, the cache will be dumped into the savapi_apc_cache_XXXXXXXX.dat file. This
file will be created in the temporary folder, unless otherwise stated. Also, when starting SAVAPI, this
cache file is reloaded. That way, no cache information will be lost during SAVAPI restarts.

2.7.2 File Reputation extension blackout mechanism
The APC component of SAVAPI, when activated, requires a permanent Internet connection. When the
Internet connection is interrupted or becomes very slow, this could lead to performance issues while
SAVAPI performs multiple scans. In order to avoid those issues, an APC "blackout" mechanism is
implemented that will temporarily disable the APC. It is configured using two options, Blackout retries
number and Blackout timeout, and it works as follows:

- If Blackout retries number consecutive scans using APC fail because of connection problems or
timeouts, SAVAPI will declare APC as unavailable and will stop using it. The rest of the scans will be
performed using the local engine only.

- After Blackout timeout seconds, SAVAPI allows one worker to use APC for scanning. The rest of the
workers will still use the local engine only.

a) If this APC scan succeeds, SAVAPI will declare APC as available and will start using it.

b) If the scan fails because of the previously mentioned problems, APC will remain unavailable and
another attempt to use APC will be made after another Blackout timeout seconds.

Because SAVAPI can detect cloud availability problems, for example limited or no Internet connection,
SAVAPI switches to scanning files locally until the cloud is available again. This enables high scanning
rate to be maintained.

2.7.3 File Reputation extension hash scanning
SAVAPI can not only scan files with APC, but it can also directly scan the files' fingerprints (also
referred to as hashes). Users can compute the hashes themselves by using the apchash library and
then scan the resulted hashes with SAVAPI. Multiple hashes can be verified in a single scan, thus
reducing the total scan time.

 Note All engine-related scanning options have no effect in this scanning mode.

 Note Some APC-related options have no effect in this scanning mode:
APCCheckRiskRatingLevel, APCUploadRiskRatingLevel.

2.7.4 Computing the File Reputation extension hash using the apchash library
Two files were added in the SAVAPI package for computing the APC hash of a specified file. These
files are located in:

• bin folder: libapchash.so for Unix or apchash.dll for Windows;

Anti-malware SDK - Cross Platform (SAVAPI) 19



2 Anti-malware SDK (SAVAPI) Library

• include folder: apc_hash.h.

The library computes the APC hash of a given file by using the following two functions:

// compute the hash
int APC_hash_file_compute(TCHAR* file_path, char **apc_hash);
// free the memory allocated internally for the hash
void APC_hash_free(void **ptr);

Simple example for using these functions:

char *hash = NULL;
// compute the hash
int ret = APC_hash_file_compute("/home/test/eicar.com", &hash);
// use this hash in SAVAPI lib, clientlib or daemon
.....
// free the memory allocated by the hash
APC_hash_free((void**)&hash);

2.7.5 Scanning the hash with Anti-malware SDK (SAVAPI)
Some simple examples of scanning an APC hash:

• SAVAPI Library and SAVAPI Client Library

SAVAPI_TCHAR *scan_buffer = NULL; 
 
// convert the hash string to a SAVAPI_TCHAR 
ret = CharToSTCHAR(&scan_buffer, 
                   "apchash:// 
275a021bbfb6489e54d471899f7db9d1663fc695ec2fe2a2c4538aabf651fd0f"); 
 
// scan the converted hash string 
ret = SAVAPI_scan(instance, scan_buffer); 
 
// free the memory allocated by the conversion 
SAVAPI_free((void **)&scan_buffer);

• SAVAPI daemon

SCAN apchash:// 
275a021bbfb6489e54d471899f7db9d1663fc695ec2fe2a2c4538aabf651fd0f,5b4 
67461218087f00c1aef83c10819d17a27bc69b7307e2dc63e4d56c49857e7 
     
310 
275a021bbfb6489e54d471899f7db9d1663fc695ec2fe2a2c4538aabf651fd0f <<< 
Eicar-Test-Signature ; APC/DOS ; Detected by Avira APC 
 
310 
5b467461218087f00c1aef83c10819d17a27bc69b7307e2dc63e4d56c49857e7 <<< 
TR/APC.SE.Gen ; APC/TR ; Detected by Avira APC 
319 OK

 Note If the scanned hash is not known by APC, the error callback will be triggered with
SAVAPI_E_APC_UNKNOWN_CATEGORY.

2.7.6 Updating the File Reputation extension hash library
In order to maintain its functionality and to fix possible issues, APC hash library needs updates. This
library can be updated with an integrated updater module (the Avira Updater) which is available on all
the APC hash supported platforms.

Through command line parameters or configuration file avupdate-apchash-product.conf for the
Updater, the following operations can be carried out:

• Check if new updates are available;

• Update APC hash library from Avira's update servers or from user-defined servers, with the proper
update structure;

Anti-malware SDK - Cross Platform (SAVAPI) 20



2 Anti-malware SDK (SAVAPI) Library

• Mirror the already configured update servers, see 7.1 Mirroring the Updater’s server structure.

The binary name of the Updater is avupdate.bin (UNIX) and avupdate.exe (Windows).

The APC hash library update command:

<Updater_binary_name> -C avupdate-apchash-product.conf

At the end of each update cycle, the status of the update will be displayed in the console. The
messages (error, warning, etc.) displayed by the Updater when executed are set in the binary
file avupdate_msg.avr. This file has to exist in the same folder as the avupdate binary file, being
mandatory for starting the Updater binary.

The APC hash library module update name is APC_HASH. This can be used to specify modules
by adding the "update-modules-list" option in command line. For more information about
configuration parameters, see 7.3 Avira Updater’s configuration parameters.

2.7.7 File Reputation extension scan callback
The APC scan callback (of type SAVAPI_CALLBACK_APC_SCAN) is triggered at key stages of the APC
scan of a file and has the purpose of:

• Giving you additional information regarding the currently scanned file

• Allowing you to have more control over the APC scan process of the file, by giving you the option at
each stage of the scan to either continue, stop the scan or report the detection of a file

Among the information that can be received on the callback, the most relevant are the following:

• The APC scan stage in which the current callback was triggered

• The file's hash (or fingerprint)

• The risk rating level of the file (the probability that it contains malware)

• A FOPS handle to the file through which it can be accessed

• A pointer to a function through which a detection can be reported by the user

 Controlling the File Reputation extension scan workflow

If registered, the APC scan callback can be triggered at one or more of the following stages of an APC
scan:

• Before the file is filtered for scanning with APC

• After the file passed the local APC filter, but before the file's hash is checked with APC

• After the file's hash was checked with APC, but before the upload (in case the file's detection is not
known)

• After the file was fully scanned with APC

 Note Filtering files for scanning with APC means checking that certain preconditions are met
before files can be scanned with APC (file type, file size, etc.).

You can read the stage the APC scan is in by accessing the stage member of the data structure
provided by the callback.

At each of the above stages you can control the workflow of the scan by returning one of the following
codes:

• SAVAPI_APC_SCAN_CONTINUE - Continue with the next stages of the scan

• SAVAPI_APC_SCAN_STOP - Stop the scan for the current file

• SAVAPI_APC_SCAN_REPORT - Report a detection and stop the scan for the current file

Anti-malware SDK - Cross Platform (SAVAPI) 21



2 Anti-malware SDK (SAVAPI) Library

For example, if you wish to allow APC hash checks but not uploads, you might implement the callback
in the following way:

int APC_scan_callback(SAVAPI_CALLBACK_DATA *data)
{

    SAVAPI_APC_SCAN_DATA *apc_scan_data = data-
>callback_data.apc_scan_data;

    switch (apc_scan_data->stage)
    {
    case SAVAPI_APC_STAGE_PRE_FILTER:
    case SAVAPI_APC_STAGE_PRE_HASH_CHECK:
    case SAVAPI_APC_STAGE_POST_SCAN:
        return SAVAPI_APC_SCAN_CONTINUE;

    case SAVAPI_APC_STAGE_PRE_UPLOAD:
        return SAVAPI_APC_SCAN_STOP;
   }
}

 Reporting a file detection

With the APC scan callback, you have the possibility to access the currently scanned object and thus
can scan it with his own technology. The result of the scan can be further integrated into SAVAPI by
reporting the found detection. To do so, you must:

• Call the report function with the detection information

• Return SAVAPI_APC_SCAN_REPORT in the APC scan callback

When reporting a detection, you have the possibility to cache it, either for clean or malware files. To do
so, you must fill two more fields from SAVAPI_APC_REPORT_DATA:

• store_cache – Must be set to 1 in order to enable caching

• ttl – How many seconds to keep the detection in cache

 Note For a ttl of 0, a default value of 600 (10 minutes) will be applied.

 Note When a detection is retrieved from the cache, only the malware name is maintained as
initially reported, while the other fields can contain static or no information.

Anti-malware SDK - Cross Platform (SAVAPI) 22



2 Anti-malware SDK (SAVAPI) Library

• Adding to the previous example, if you wish to also scan files with your own cloud and cache the
detection for the next 5 minutes, you might implement the callback in the following way:

int APC_scan_callback(SAVAPI_CALLBACK_DATA *data)
{
    SAVAPI_APC_SCAN_DATA *apc_scan_data = data-
>callback_data.apc_scan_data;
    SAVAPI_APC_REPORT_DATA report_data;

    switch (apc_scan_data->stage)
    {
    case SAVAPI_APC_STAGE_PRE_FILTER:
        return SAVAPI_APC_SCAN_CONTINUE;

    case SAVAPI_APC_STAGE_PRE_HASH_CHECK:
        // scan the file with own cloud

        if (file_is_infected)
        {
            report_data.scan_answer = SAVAPI_APC_ANSWER_INFECTED;
            report_data.malware_info.name = malware_name;
        }
        else if (file_is_clean)
        {
            report_data.scan_answer = SAVAPI_APC_ANSWER_CLEAN;
        }
        else
        {
            // if no detection was found, continue scanning with APC
            return SAVAPI_APC_SCAN_CONTINUE;
        }

        // cache the detection
        report_data.store_cache = 1;
        report_data.ttl = 5 * 60;

        apc_scan_data->set_report_info(apc_scan_data->savapi_fd,
        &report_data);
        return SAVAPI_APC_SCAN_REPORT;

    case SAVAPI_APC_STAGE_PRE_UPLOAD:
        return SAVAPI_APC_SCAN_STOP;

    case SAVAPI_APC_STAGE_POST_SCAN:
        return SAVAPI_APC_SCAN_CONTINUE;
    }
}

 Note Detections reported in the APC scan callback function will be reflected in the
SAVAPI_CALLBACK_REPORT_FILE_STATUS callback.

2.7.8 File Reputation extension quota
Based on your contract type with Avira, there is a limitation to the number of APC requests in a specific
time interval.

A quota is the number of requests you can make to the APC within an agreed time interval. The time
interval is defined in the contract, and can be any period of time between one minute and one year.

When the quota limit is reached, APC may stop responding to requests until the end of the current time
interval, or it may continue to respond to requests, depending on the contract agreements.

If the quota interval is a minute, SAVAPI will try to connect again to APC in one minute, otherwise
SAVAPI will try in an hour.

You may have one or several quotas depending on your needs.

 Note Within a quota, Avira may also limit the number of inbound requests over a period shorter
than the time interval, in order to protect both you and Avira from extraordinary bursts of requests.

Anti-malware SDK - Cross Platform (SAVAPI) 23



2 Anti-malware SDK (SAVAPI) Library

Such bursts may overwhelm the service or use up your entire quota in a period much shorter than the
contracted time interval.

2.8 Anti-malware SDK (SAVAPI) OnAccess

 Note Currently, the OnAccess functionality is implemented only in the library version of SAVAPI.

 Note This functionality is available only on Windows systems.

In addition to on-demand file scanning, SAVAPI supports OnAccess scanning via the SAVAPI
OnAccess module.

With OnAccess scanning the user is given the possibility to automatically scan files stored on the
drives which are being accessed by the operating system or user processes. This adds an additional
degree of security since in order for the malware to propagate, the file containing the malware code
must first be read or executed. The low-level operation of reading from (including reading for execution)
and writing to the file is intercepted by SAVAPI OnAccess, and the file is scanned for viruses before
allowing access to it to the requesting process. Therefore, reading from, writing to, or trying to execute
the file will trigger SAVAPI to scan the file for malware first. Depending on the SAVAPI OnAccess
cache, chosen SAVAPI scan options and file types, the file will either be scanned for malware or
directly considered safe. In case the file is considered safe, or has been scanned and found clean, the
access to the file is granted to the requesting process.

Alternatively, if the file is found to be infected, access to any other process is restricted and the user is
notified.

In case no user interaction with SAVAPI OnAccess is acceptable, then configuring automatic action
for infected files is also possible. Please see the configuration section of the manual and the API
documentation.

The SAVAPI OnAccess module can be customized by setting options in the protocol and configuration
file for the SAVAPI Service, or before SAVAPI Library OnAccess initialization. These options allow
control over the time spent in file scan, whether or not files should be rescanned when a process
modifies them, scan network drives, extension, file and process exclusions.

For a complete list of configuration options, see Configuration and, if implementing SAVAPI into a new
product, the API documentation.

 Note The accessed files are cached, but the caching mechanism is not controllable by the user or
by the person implementing SAVAPI.

 Note Only clean files are cached so as to not be scanned several times. Altering the file will also
update its cache information.

 Note If both APC and OnAccess are enabled, only the portable executable (PE) files will be sent
to APC upon their execution. Non portable executable (Non-PE) files will not be sent to APC, but will
continue to be scanned with the local engine.

2.8.1 Dependencies

 Note Terms introduced: OnAccess virtual driver, SAVAPI OnAccess runtime libraries

 Note The OnAccess virtual driver is made up of several Windows driver files (kernel modules,
catalog files, etc.)

Unlike other SAVAPI modules represented in this manual, SAVAPI OnAccess has a few dependencies.
Aside from the valid SAVAPI OnAccess product license, OnAccess virtual driver and additional runtime
libraries are also needed for proper operation.

Anti-malware SDK - Cross Platform (SAVAPI) 24



2 Anti-malware SDK (SAVAPI) Library

The OnAccess virtual driver, additional SAVAPI OnAccess runtime libraries and install/uninstall driver
setup binary are supplied within the SAVAPI package. The setup binary with argument install has to
be executed before installing/starting SAVAPI in order for SAVAPI OnAccess to be enabled. If the
OnAccess virtual driver needed by SAVAPI OnAccess is not installed or, if the OnAccess license is not
valid or has expired, SAVAPI will not provide OnAccess file scanning.

 Note The additional dynamic link library file required for SAVAPI OnAccess is avgio.dll.

As in the future more than one library might be needed, this library will be referred to as "SAVAPI
OnAccess runtime libraries". SAVAPI will try to load the runtime libraries either from the current working
directory (location of SAVAPI Service executable) or the library load path specified as command line
parameter Command line parameters --ldpath.

As rule of thumb, the OnAccess libraries must be in the same location as the SAVAPI dynamic link
library.

2.8.2 Object exclusions
The SAVAPI OnAccess module allows specified objects to be excluded from scanning. This could be
helpful when optimizing the application for speed and user responsiveness. The objects to be excluded
must be specified by the development team.

 Warning Please define exclusions with caution! The excluded files may end up being malware or
important attack vectors.

Scanning only certain extensions

OnAccess can be configured to scan only a certain list of extensions. These extensions are only
considered for files not being mapped for execution. Any file mapped for execution, no matter its
extension, will be scanned. It is therefore possible that files having extensions others than those
defined will be scanned.

 Defining exclusions for file objects

Files to be omitted from real-time scanning can also be defined. Any file or folder specified here will
be ignored, even if they will be mapped for execution. If a directory is excluded, all its sub-directories
are automatically also excluded. Keeping this list short is HIGHLY RECOMMENDED, since every file
accessed by the operating system will be cross-checked against it.

Wildcards are accepted only if present after the last path separator (backslash), if any.

 Note Exclusions for file objects are case sensitive.

 Note All options starting with SAVAPI_OPTION_G_OA_must be separated by a semicolon.

Example: C:\Folder\file.exe;C:\Folder\Subfolder\*.doc?;C:\Exclude\All
\From\ Here\;\Device\HarddiskDmVolumes\PhysicalDmVolumes\BlockVolume1\;
*.mdb;*.md?;F:

Statements like:

C:\Folder*\file.exe

C:\Folde?\fi\*.exe

\\.\c:\file.exe

\??\c:\file.exe

are considered invalid.

When excluding an entire drive, not using the backslash after the drive quotation mark is faster. F:
performs faster than F:\.

Statements exclusively comprising the following characters are invalid:

Anti-malware SDK - Cross Platform (SAVAPI) 25



2 Anti-malware SDK (SAVAPI) Library

* (asterisk), ? (question mark), / (forward slash), \ (backslash), .
(dot), : (colon).

 Defining excluded processes

All file actions performed by processes defined in this list will be excluded from the onaccess scan
operation. Wildcards are accepted only if present after the last path separator(backslash). If no path
separator is present, then the expression containing wildcards is invalid.

Excluding a process without full path details only applies to processes where the executable files are
located on hard disk drives. Full network path is required for processes whose executable is located on
remote drives. Do not specify any exceptions for processes where the executable files are located on
dynamic drives (e.g.: USB keys).

The Windows Explorer and the operating system itself cannot be excluded.The specified path and file
name of each process must contain a maximum of 255 characters.

 Note Excluded processes are case sensitive.

Example:

C:\Folder1\Subfolder\application.exe

C:\Folder2\Subfolder\applicatio?.exe

C:\Folder3\Subfolder\app*.exe

C:\Folder4\Subfolder\*.exe

Application.exe

Application1.exe;Application2.exe

App*.exe

Statements like

C:\Folder*\file.exe

C:\Folde?\fi\*.exe

\\.c:\file.exe

\??\c:\file.exe

are considered as invalid.

Statements exclusively comprising the following characters are considered invalid:

* (asterisk), ? (question mark), / (forward slash), \ (backslash), .
(dot), : (colon).

2.8.3 Updating OnAccess
In order to update the OnAccess files, simply call the avupdate.exe specifying the OnAccess
configuration file (*avupdate-on-access-savapilib-product.conf*) and the OnAccess info file (*/idx/
savapi4oalib-win32-en.info.gz* or /idx/savapi4oalib-win64-en.info.gz).

 Note When updating the OnAccess component, the SAVAPI Library must also be updated in order
to keep them synchronized.

 Note Updating the OnAccess files (binaries and drivers) does not involve uninstalling the old
drivers and installing the newer ones. Updated are just the components from the install directory
specified when calling the updater.

More details about the update process in general can be found at 7. Updating Anti-malware SDK
(SAVAPI).

Anti-malware SDK - Cross Platform (SAVAPI) 26



2 Anti-malware SDK (SAVAPI) Library

 Updater related files

The following table contains a minimal description of the OnAccess update related files from the
SAVAPI package:

Name Description

avupdate-on-access-savapilib-product.conf The SAVAPI Library update configuration file for OnAccess
modules.

ams_setup.exe Executable file used for installing/uninstalling OnAccess
drivers.

 Anti-malware SDK (SAVAPI) OnAccess ams_setup binary details

1. Generic considerations

The ams_setup.exe has been designed as a multi-platform configurable SAVAPI OnAccess driver
maintenance utility. This tool should be used to install and uninstall the SAVAPI OnAccess drivers.
Currently, it does not repair a malfunctioning SAVAPI OnAccess installation.

During the update process of SAVAPI OnAccess, if any of the drivers are updated, no automated
installation or uninstallation of the drivers will be performed.

2. The log file

This application will write all its messages to a log file. The messages are always appended to the log
file and the log file can be opened as read-only when the application is running.

 Note The log file is never trimmed/rotated/cleaned; this must be done by the integrator.

3. Usage information

This is a WINAPI application, and therefore does not use any standard I/O streams (stdout, stdin,
stderr). The application accepts configuration via arguments presented at start-up, will write all
messages to a log file and will have an exit code of 0 (zero) for success.

This executable accepts arguments that control its behavior. It can, for instance, be started via
command-line as ‘ams_setup.exe arg1 arg2’.

 Note The tool will not abort execution on errors, but errors will be detected and logged.

 Note This application must be granted administrator credentials. Otherwise it will not start.

3.1 The install argument

If the ‘install’ argument is specified, the tool will perform SAVAPI OnAccess driver install operations.
These include checking the current state of the environment (already installed components), choosing
the correct driver location relative to the respective operating system version and installing the driver
components (*.inf*, .cat and .sys files). All progress report is written to the log file.

A return code of 0 (zero) means that the process finished successfully. All other return codes indicate
errors.

Usage: ams_setup.exe install

3.2 The "uninstall" arguments

If the 'uninstall' argument is specified, the tool will start the driver uninstallation process. All messages
will be appended to the log file.

An exit status of 0 (zero) means that the uninstall process finished successfully. All other return codes
indicate errors.

Uninstalling the drivers will require a system restart. A popup message will ask for the user permission.
To avoid the popup message, uninstallation must be called with the additional argument silent.

Usage: ams_setup.exe uninstall [silent]

4. Restarting the system

Anti-malware SDK - Cross Platform (SAVAPI) 27



2 Anti-malware SDK (SAVAPI) Library

In order to remove certain components, a system restart is needed: A delete operation is scheduled
for the next system start. It is not critical to reboot the system at uninstall time, but a new ams setup
install operation will encounter errors if the respective components were not fully removed (in other
words, if a system reboot was not performed).

5. Proper driver folder structure

The ams_setup.exe will always detect the operating system version and the architecture, but the
OnAccess drivers that have to be installed must be contained within a folder having a certain folder
structure. The structure is as follows (as present in the SAVAPI SDK package):

├───win32
│   ├───win7
│   ├───win8
└───win64
    ├───win7
    ├───win8

It is not necessary to have at all times all flavors of drivers present in the containing driver folder; only
drivers for the machine the tool is being executed on is needed.

 Note The win8 folder contains drivers compatible with both Windows 8.x and Windows 10
systems.

2.9 FPC support

 Note This chapter introduces the following terms:

False Positive – A file that is clean/safe, but its contents resemble known malware, so the engine
heuristic considers it a member of a known family of malware and reports it as such.

FPC – False Positive Control. An On/Off functionality that controls malware reporting to the developer
when malware is found. When turned on, the FPC cloud (based on swarm intelligence) is queried
whether this is a true malware (most of the cases) or a false positive (rare). In case of a confirmed false
positive, the file is considered clean.

The graphic below illustrates the high-level data flow of the Avira FPC mechanism.

• A – the process between any local instance that is FPC enabled and the False Positive Control
cloud:

Anti-malware SDK - Cross Platform (SAVAPI) 28



2 Anti-malware SDK (SAVAPI) Library

1. The application has detected an infected file (potential false positive) on a computer.
2. The file’s fingerprint and possible malware information are both extracted and sent to the False

Positive Control cloud for review.
3. The information is analyzed by the False Positive Control cloud.
4. The yes/no decision on false positive is taken.
5. The response is sent back to the requester.

• B – the process by which Avira sensor network instances contributes to the cloud knowledge:

In the past, once a file was scanned and malware was detected, SAVAPI offered no functionality to
check if the detection is indeed malware or actually a clean file. Certain files can randomly resemble
parts of known malware considered to be still in circulation or, in the case of programs, contain unusual
or malware-like pieces of code, but are otherwise safe to be opened or executed. Furthermore, the
engine heuristic is a feature that is crucial in detecting new members of a malware family, but, also
depending on its configured heuristics level, can report clean files as being malware.

It has been an age-old problem of tweaking the engine heuristics to offer the best in-thefield detection
of new malware types while having low false positive detection rates, but the false positive detections’
issue cannot be solved by tweaking the engine and cloud heuristics alone.

 Note The Avira FPC cloud does not store information that can be used to identify the users. The
Avira FPC cloud, however, does store relevant information about the file being queried, such as, but
not limited to: file name, name of possible malware detection, file size, unique file hash, file creation
and modification time, etc.

The FPC functionality comes to complement the Avira engine and cloud detection capabilities by
introducing an additional verification step before reporting the detection as malware. This verification
step means querying information about the file (such as file name, location, size, unique hash, date
of creation, issuer, etc) to the Avira FPC servers, where the definitive infected-or-clean status of the
file could be known. If the respective file’s status is known to be a false positive (clean file reported
as infected), then the local engine and APC detection is ignored, and the developer is informed that
the file is clean. In case no information about the file’s status exists in the Avira FPC cloud, the file is
considered to be truly infected for the time being, and the developer is notified about malware status
and specific type. If at some point in the future, after the file has been investigated by a virus analyst, it
is found to be clean, subsequent queries to the Avira FPC cloud will return the file status as clean.

 Note The FPC functionality is turned off by default and must be explicitly activated. When
implementing the SAVAPI Library, set SAVAPI_OPTION_FPC for each SAVAPI instance. When using
the SAVAPI daemon, set/get option FPC.

Virus analysts and researchers routinely check the files reported to the Avira FPC cloud, gather
relevant information from the Avira sensor network and update information stored in the Avira FPC
cloud. However, the Avira FPC cloud should be regarded as an automated query-based system, where
an answer is given depending on what information is available at that specific time.

 Note In order for the Avira FPC to work, a network connection is required. If FPC is enabled
and no proxy is defined by the developer at SAVAPI initialization, then one will be searched in the
environment and, in the case of Windows systems, in the system settings. A proxy for the SAVAPI
daemon can be set in the configuration file. If no proxy is set and FPC is enabled, then one will be
searched in the environment and, in the case of Windows systems, also in the system settings.

 Note When implementing the SAVAPI Library, the proxy can be set by calling
SAVAPI_global_set with the option SAVAPI_OPTION_G_PROXY before creating any SAVAPI
instances. When using the SAVAPI daemon, set the option Proxy in the configuration file.

2.9.1 FPC blackout mechanism
The FPC blackout mechanism improves the scan performance in scenarios where a connection to the
Avira FPC cloud is generally available, but with interruptions. When such a temporary availability issue
is detected, SAVAPI’s FPC module is temporarily disabled (for a configurable amount of time), so that

Anti-malware SDK - Cross Platform (SAVAPI) 29



3 Anti-malware SDK (SAVAPI) Service

no time will be lost trying to reach the Avira FPC cloud using a temporarily faulty network connection.
The scan process will still be reliable, even though it will rely on the local engine and, depending on the
respective network issue, the APC scan service.

The FPC blackout mechanism behaves identical to the APC blackout mechanism (please see Blackout
mechanism).

If during normal operation a consecutive number of time-outs occur while querying the Avira FPC
cloud, the SAVAPI FPC module will be disabled for a configurable amount of time. Once that amount of
time has passed, a single query will be issued to the Avira FPC cloud. If the Avira FPC cloud returns an
answer to the respective query, then SAVAPI fully re-enables the FPC module. If the query fails, then
SAVAPI’s FPC module re-enters the blackout.

The time before a time-out is declared, the number of consecutive time-outs and the time SAVAPI’s
FPC module will be disabled are configurable for both the SAVAPI Library and the SAVAPI daemon.

 Note When implementing the SAVAPI Library, the options
that have to be set in order to configure the blackout timings are
SAVAPI_OPTION_FPC_TIMEOUT, SAVAPI_OPTION_G_FPC_BLACKOUT_TIMEOUT and
SAVAPI_OPTION_G_FPC_BLACKOUT_RETRIES. When using the SAVAPI daemon, options
FPCTimeout, FPCBlackoutTimeout and FPCBlackoutRetries have to be set in SAVAPI
daemon’s configuration file.

3 Anti-malware SDK (SAVAPI) Service

3.1 General description
SAVAPI Service is an application based on SAVAPI Library. It offers all the features of the SAVAPI
product, except:

Scanning files mapped in memory (possible only if the combo SAVAPI Service + SAVAPI Client Library
is used)

SAVAPI Service is a multi-thread application. When started, it creates a pool with worker threads and
listens to client requests on a network socket (TCP/IP or UNIX local socket). When a client request
arrives, it is associated to a worker thread that will process and answer all the client commands.

SAVAPI Service communicates with the client via a text-based protocol. Through this protocol, the
client applications can

• configure the service,

• obtain information about the service status, configuration option values or licensing,

• send scan requests,

• stop the service.

The maximum command size allowed by the SAVAPI Service is set to:

2 * PATH_MAX + 64

This setting allows you to scan any possible file-path of the current file-system.

• PATH_MAX is the maximum length of a file-system path. It is a platform-dependent system variable
on UNIX. On Windows, it is limited to 8192.

• The maximum value allowed by SAVAPI includes the command's arguments, line
terminating characters (EOL) and also the string terminating NULL character: <command>
<arguments><EOL><\0>

 Note ENCODE_FILENAMES should be used for sending paths and file names that contain
control characters, or which begin or end with white-spaces through the socket. An alternative to
ENCODE_FILENAMES is the SCAN hex_enc:// command (see The SCAN command).

Anti-malware SDK - Cross Platform (SAVAPI) 30



3 Anti-malware SDK (SAVAPI) Service

3.2 Integration

3.2.1 On-demand file scanning
In this mode, the SAVAPI Service will be started and will listen on a specified interface (or the default
interface, if none is specified).

The client application(s) will:

• connect to the network socket where SAVAPI Service is listening,

• perform the handshake with the service,

• set/ read options value,

• send scan requests,

• read scan answers.

The client application is responsible to implement all the communication-related workflow (create a
socket, connect to the SAVAPI Service listening socket, read and write from the socket, react to socket
I/O errors) and its own workflow (create threads for parallel requests, prioritize the scan requests, etc).

3.2.2 OnAccess file scanning

 Note Currently, the OnAccess functionality is implemented only in the library version of SAVAPI.

 Note This functionality is available only on Windows systems.

To use the OnAccess file scanning functionality provided by SAVAPI, a valid SAVAPI OnAccess product
license, the OnAccess virtual driver and additional SAVAPI OnAccess runtime libraries have to be
installed.

SAVAPI will try to access the virtual device associated with the installed OnAccess virtual driver and
the SAVAPI OnAccess runtime libraries. Failure in accessing either of these, or failing to validate the
SAVAPI OnAccess product license will make SAVAPI disable the OnAccess module. The SAVAPI
Service implements functionality exported by the SAVAPI Library.

Further information about the SAVAPI OnAccess module can be found in chapter Anti-malware SDK
(SAVAPI) OnAccess and its sub-chapters.

3.3 Configuration
There are more ways to configure the SAVAPI Service features and options.

• Using command line parameters

The service accepts command line parameters at startup. A complete list with the accepted
parameters, their functions and accepted values is detailed below. See 3.3.1 Command line
parameters.

• Using configuration file options

Through a command line parameter, the service can receive a configuration file containing the options
and their values. A complete list with the accepted options, their default values and their valid values is
detailed below. See 3.3.2 Configuration file options.

• Using the SAVAPI protocol SET commands

SAVAPI Service uses a text-based protocol to communicate with the outside world. Through the
protocol commands, the SAVAPI Service can be configured to answer to commands and requests. See
3.3.3 Protocol.

Anti-malware SDK - Cross Platform (SAVAPI) 31



3 Anti-malware SDK (SAVAPI) Service

3.3.1 Command line parameters

 Note Some of the command line parameters are not available for all the supported platforms. For
example, the parameters regarding the user and group are available only for UNIX-based operating
systems, because in Windows the service runs in the background as a Service under the Local System
Account user.

SAVAPI will consider all numeric values as decimal (base 10).

The command line parameter types include:

• Options – allow you to set some specific options at program startup

• Commands – allow you to send some specific commands to the service/daemon

• Information – allow you to retrieve various data regarding the service/daemon (help message,
version information, etc)

 Options

• -N

Starts the SAVAPI Service in the foreground. SAVAPI will run as a process. This option is not
activated by default. The service will start in the background.

• --pool-scanners=<scanners number>

Starts the SAVAPI Service with the specified number of workers. Default: 24; Minimum: 1;
Maximum: 300.

• -C, --config=<configuration file location>

Specifies the location of the SAVAPI Service configuration file.

Default: <SAVAPI_service_binary_directory>/savapi.conf.

• --temp=<scanning temporary files location>

Specifies the location of the scanning temporary files. The temporary files created while scanning
and unpacking will be stored in this location.

Default: /var/tmp on UNIX, %temp% on Windows.

 Note It is recommended for the location to not be a directory that contains sensitive files, such
as SAVAPI binaries or configuration files.

• --key-file=<key file location>

Specifies the location of the SAVAPI Service key file.

Default: <SAVAPI_service_binary_directory>/HBEDV.KEY or
<SAVAPI_service_binary_directory>/hbedv.key

• --vdf-dir=<VDF files location>

Specifies the location of the VDF files.

Default is the location of the SAVAPI Service binary.

• --pid-dir=<PID file location>

Specifies the location of the PID files.

The default location is: \'/var/tmp'.

 Note This option is not available on Windows systems.

• --modules-dir=<modules_directory_location>

Anti-malware SDK - Cross Platform (SAVAPI) 32



3 Anti-malware SDK (SAVAPI) Service

Specifies the directory where SAVAPI will store the files needed for Non-disruptive service update.

Default is the value of the option --temp=<scanning temporary files location>.

The specified location must exist and must have the "rwx" permissions for the user who owns the
SAVAPI process.

 Note The directory must exist on an executable file system, since SAVAPI will try to load and
execute the files from that path. In order to optimize some internal processes, it is recommended to
have both installation and modules directories on the same partition.

 Note This option will be ignored if the option --duplicate-modules is disabled.

• --duplicate-modules

Activates the usage of modules files duplication in order to perform updates without disrupting the
service. The option does not require a value. If this option is not set, the function is disabled.

For detailed information, see Non-disruptive service update.

• --socket-file=<socket file location>

Specifies the location and the name of the UNIX local socket. The UNIX local socket file is removed
upon SAVAPI Service exit.

- If the option CreateSocketDir is disabled, the location provided for the local socket must exist;
the user and group used to start the SAVAPI Service must have proper access permissions to the
location. Otherwise, SAVAPI Service does not start and it returns an error message, describing
the reason for which the location cannot be used. For example, for a socket file specified as \--
socket-file=/ non_existent_dir/socket_file, SAVAPI Service does not start and it
returns an error message, stating that the directory /non_existent_dir/ does not exist.

- If the option CreateSocketDir is enabled and the provided socket file path does not exist, SAVAPI
Service creates the parent directory of the socket file at startup. For example, for a socket file
specified as \--socket-file=/ non_existent_dir/socket_file, SAVAPI Service creates
the path / non_existent_dir/.

The directory is created with the same user and group used to start SAVAPI Service. The directory
permissions are calculated as the addition of the socket permissions and the executable bit. By
default, socket permissions are 0600, so the default permissions for the created directory are 0700.
The created directory is not deleted when SAVAPI Service is stopped.

 Note The socket file and directory owners (user and group) may be different than the user and
group used to start SAVAPI Service, depending on the setuid and setgid bits.

Only the socket file’s parent directory is created; if more than one directory from the provided socket
file path do not exist, SAVAPI Service returns an error.

 Note If the socket directory exists, it will not be changed in any way regarding user, group or
permission settings.

Default: /var/tmp/.SAVAPI

 Note This option is not available on Windows systems.

• --socket-permissions=<mode>

Specifies the permissions for the UNIX local socket. By default, the socket file is created with the
same user/group as the running SAVAPI Service and with mode=0600. The socket permissions
will also be used when creating directories from the socket file location.

 Note This option is not available on Windows systems.

Anti-malware SDK - Cross Platform (SAVAPI) 33



3 Anti-malware SDK (SAVAPI) Service

• --log-file=<log file location>

Specifies the log file name and location. There is no default value.

• --ldpath=<dependencies location>

Specifies the path to SAVAPI libraries. Default: location of the SAVAPI Service binary.

• --install

On Windows, it registers the service in Service Control Manager (description, display name, binary
image path, auto start).

 Note This option is available only on Windows systems.

• --uninstall

On Windows, it removes the registration of the service from the Service Control Manager.

 Note This option is available only on Windows systems.

• --tcp=[host:]port

Specifies the port (and optionally, the host) to which the SAVAPI TCP/IP listening socket bounds. If
no host is provided, SAVAPI bounds to localhost.

host can be either a host name or an IP address in any accepted format (dotted or not): decimal,
hexadecimal, octal.

 Note SAVAPI supports only IPv4 addresses.

On UNIX systems this forces SAVAPI to use TCP/IP sockets rather than UNIX local sockets. On
Windows systems this option is mandatory.

The service will not start, if the interface is not specified, either through this option or through the
configuration file.

• --pool-connections=<pool connections number>

Defines the length of the pending connections queue. Default: 48; Minimum: number of --pool-
scanners; Maximum: 900.

• --ave-dir=<AVE files location>

Specifies the location of the engine files. The default is the location of SAVAPI Service binary.

• --fops-lib=<path/to/fops/library>

Specifies the location of SAVAPI’s fops plug-in library. Default value: internal SAVAPI fops
implementation will be used.

• --fops-lib-params="<blank separated list of parameters>"

Specifies the SAVAPI’s external fops library blank separated parameters. Default value: No
parameters will be sent to the SAVAPI external fops library.

• --no-spv

SAVAPI starts without the supervisor process.

 Note This option is not available on Windows systems.

• --apc-mode="<auto|disabled|check-only|full>"

Specifies the mode in which the Avira Protection Cloud (APC) component will be used for scanning
files.

Anti-malware SDK - Cross Platform (SAVAPI) 34



3 Anti-malware SDK (SAVAPI) Service

Available options:

auto - will try to activate full mode if possible, otherwise the default is used disabled

disabled - APC scanning disabled

check-only - only send file fingerprints to the APC

full - complete APC scanning functionality (send file fingerprints, upload files)

Default value: auto

• --apc-cert-dir="<APC certificate directory path>"

Specifies the certificate directory path. Default: the main SAVAPI Service binary location.

 Commands

• --stop

Stops SAVAPI. This will work only if you specify the running SAVAPI interface, either by command
line options (--tcp) or by configuration file (--config=<configuration_file>).

 Note The stop command will not be executed if the user who sends the command does not
have enough privileges (on UNIX it means that the user does not have enough privileges to connect
to the SAVAPI Service). This command is not available on Windows systems.

• --status

Retrieves the current status of SAVAPI. This will work only if you specify the running
SAVAPI interface, either by command line options (--tcp) or by configuration file (\--
config=<configuration_file>).

 Note The status command will not be executed if the user who sends the command does not
have enough privileges (on Windows this means the user cannot send commands to services, on
UNIX it means that the user does not have enough privileges to connect to the SAVAPI Service).
On Windows systems, this command will work only if SAVAPI is registered as a service, using the
option \--install.

• --reload-engine

Reloads the engine. This enables SAVAPI to use the newly updated engine without restarting
or disrupting the service. In case the reload fails, SAVAPI will try to continue with the old engine,
otherwise the service will stop.

 Note To use this command, make sure you started the SAVAPI Service with the option --
duplicate-modules.

For detailed information, see Non-disruptive service update.

• --report

Prints relevant startup information about all running SAVAPI processes started from the same binary
directory. Command’s output format:

<process_info_1>\n<process_info_2>\n..<process_info_n>

<process_info_1> = <info_1>\n<info_2>\n..<info_m>

<info_1> = [<pid>] <field_name>: <field_value>

<pid>= the process ID of the SAVAPI process

<field_name> = CMDLINE, INTERFACE, DUPLICATE_MODULES

The values of each field name specifies the following:

- CMDLINE

Anti-malware SDK - Cross Platform (SAVAPI) 35



3 Anti-malware SDK (SAVAPI) Service

Specifies the full startup command line of the SAVAPI process.

CMDLINE: <"full_process_startup_cmdline">

- INTERFACE

Specifies the listen interface of SAVAPI process. It can be an Unix socket or a TCP socket.

INTERFACE: <host/socket_file:port_number/0>

- DUPLICATE_MODULES

Specifies the value of the option --duplicate-modules. This shows if the SAVAPI process can
successfully execute a reload-engine command. A value of "1" means that the option is activated.

DUPLICATE_MODULES: <0/1>

Example for three SAVAPI processes started from /var/tmp/savapi/savapi:

# cd /var/tmp/savapi
# ./savapi --no-spv -N &
# ./savapi --no-spv -N --tcp=9999 &
# ./savapi --tcp=8888 --duplicate-modules
# ./savapi --report
[18329] CMDLINE: "/var/tmp/savapi/savapi" "--no-spv" "-N"
[18329] INTERFACE: /var/tmp/.SAVAPI:0
[18329] DUPLICATE_MODULES: 0
[7876] CMDLINE: "/var/tmp/savapi/savapi" "--no-spv" "-N"
"--tcp=9999"
[7876] INTERFACE: localhost:9999
[7876] DUPLICATE_MODULES: 0
[8123] CMDLINE: "/var/tmp/savapi/savapi" "--tcp=8888"
"--duplicate-modules"
[8123] INTERFACE: localhost:8888
[8123] DUPLICATE_MODULES: 1

If no SAVAPI processes are running, a relevant message is displayed when running the command:

# ./savapi --report
No processes are running.

This command is intended to ease the usage of supervisors or update scripts, as it provides startup
information in a format easy to parse with command line tools.

 Note This command is not available on Windows systems.

 Note The report functionality uses shared memory segments and semaphores. If the system limits
because of maximum open shared memory segments, or if the semaphores are too low, the SAVAPI
will not provide any report information and the --report command might fail.

For example: On a UNIX system set the maximum semaphores to 0: $ sudo sysctl -e
kernel.sem="0 32000 32 0"

Start SAVAPI: $ <some_dir>/savapi --report

Try to check the report: $ <some_dir>/savapi --report

Report failed. Please check log for details

 Information

• -V, --version

Displays the version information.

# ./savapi --version

Product build: Linux (x86_64, glibc 2.19)

SAVAPI Service version: 4.0.0.148

Component versions:

Anti-malware SDK - Cross Platform (SAVAPI) 36



3 Anti-malware SDK (SAVAPI) Service

SAVAPI Library version: 4.0.0.148

Engine version: 8.3.32.0

Packlib version: 8.4.0.80

VDF version: 8.11.242.104

APC Library version: 2.8.0.3

• -h, --help, -?

Displays the help message.

3.3.2 Configuration file options
All the lines starting with '#' or ' ' (space) in the configuration file are ignored, when options are parsed.
The format of the configuration is as much as possible a 1:1 match with the SAVAPI TCP/IP protocol.

Accepted forms of writing the parameters in the configuration file are:

'Attribute=value'

'Attribute value'

Attributes are case insensitive. Values are case sensitive. Attributes are separated by CR.

The default values are provided for all the options, where such values exist.

The SAVAPI Service will not start, if invalid values are provided for any of the configuration file options.
An error will be printed regarding the invalid value.

SAVAPI will consider all numeric values as decimal (base 10).

System hard-limit:

On UNIX, SAVAPI uses the system hard-limit (see ulimit -Hn) for the maximum number of
opened files allowed by the process. This limit is shared between SAVAPI connections (the higher
the archives' recursion level, the more files will be created). When using large values for the options
PoolScanners, PoolConnections and ArchiveMaxRec, unexpected errors (scanning proc-errors,
failed connections) may occur, if the system hard-limit is too small.

 Anti-malware SDK (SAVAPI) Service running options

• CurrentWorkingDirectory

CurrentWorkingDirectory </path/to/working/folder>

Sets the current working directory for SAVAPI. This eliminates the need to specify full paths in file
names, when commands that accept file names as parameters are used.

Available values: only absolute paths are accepted; relative paths are not accepted and the service
exits with an error.

Default value: the SAVAPI Service binary location.

• TextMode

TextMode <ASCII-PRINT | LOCALE | UTF-8>

Specifies the method used for character encoding. The SAVAPI protocol provides three modes for
handling text. The modes are applied to both incoming and outgoing data.

Available values:

- ASCII-PRINT

Only printable characters of the ASCII set are considered valid characters. These include the
characters 9 and 32-126. All other character values are converted to '?' (63). This is a conservative
setting for clients that want to keep communication restricted to 7-bit printable text.

Anti-malware SDK - Cross Platform (SAVAPI) 37



3 Anti-malware SDK (SAVAPI) Service

- LOCALE

All characters will be handled "as-is". It is the responsibility of the client to ensure that the SAVAPI
Service will be able to correctly interpret the text (for example, with matching locale settings
between client, service and file system).

 Note 0-value characters will not be handled correctly in this mode. Encoding such as UTF-16LE or
UTF-32LE are not supported by the SAVAPI TCP/IP protocol.

- UTF-8

All texts must be correctly encoded as UTF-8. Invalid encodings will result in error responses.

Default value: LOCALE

 Note If invalid text is received, the SAVAPI Service will output an error (whenever this is possible)
or drop the connection.

• PoolScanners

PoolScanners <no_of_workers>

Specifies the number of SAVAPI workers. SAVAPI will start with the specified number of workers.

SAVAPI will not accept an infinite number of scanners. The maximum accepted number is 300.

Available values: 1 - 300

Default values: 24

• PoolConnections

PoolConnections <no_of_pool_connections>

Specifies the length of pending connections queue.

SAVAPI will not accept an infinite number of pending connections. The maximum accepted number
is 900.

Available values: 1 - 900

Default values: 48

 Note Since it makes no sense having more available workers than accepted connections, if the
number of PoolConnections is lower than PoolScanners, the value received from PoolScanners
will be used for both options.

• User

User <user>

Specifies the SAVAPI Service credentials.

SAVAPI Service will start and will drop its credentials, as soon a possible, to the specified user.

Available values: user name.

Default value: There is no default value for this option. The service will run with the user and group
it was started with (if nothing is specified in the configuration file).

 Note This option is available only on UNIX systems.

• Group

Group <group>

Specifies the SAVAPI Service credentials.

Anti-malware SDK - Cross Platform (SAVAPI) 38



3 Anti-malware SDK (SAVAPI) Service

SAVAPI Service will start and will drop its credentials, as soon a possible, to the specified group.

Available values: group name.

Default value: There is no default value for this option. The service will run with the user and group
it was started with (if nothing is specified in the configuration file).

 Note This option is available only on UNIX systems.

• PidDir

PidDir </path/to/the/pid/dir>

Specifies the SAVAPI Service PID file location.

Available values: Only absolute paths are accepted; relative paths will not be accepted and the
service will exit with an error.

Default value: /var/tmp.

 Note This option is available only on UNIX systems.

• KeyFile

KeyFile </path/to/the/key/file>

Specifies the location of the SAVAPI license key file.

Available values: Only absolute paths are accepted; relative paths will not be accepted and the
service will exit with an error.

Default value: <SAVAPI_service_binary_directory>/HBEDV.KEY or
<SAVAPI_service_binary_directory>/hbedv.key

• AveDir

AveDir </path/to/the/ave/dir>

Specifies the location of the engine files.

Available values: Only absolute paths are accepted; relative paths will not be accepted and the
service will exit with an error.

Default value: The location of the SAVAPI Service binary.

• VdfDir

VdfDir </path/to/the/vdf/dir>

Specifies the location of the VDF files.

Available values: Only absolute paths are accepted; relative paths will not be accepted and the
service will exit with an error.

Default value: The location of the SAVAPI Service binary.

• ModulesDir

ModulesDir </path/to/the/modules/dir>

Specifies the directory where SAVAPI will store the files needed for Non-disruptive service update.

Available values: Only absolute paths are accepted; relative paths will not be accepted and the
service will exit with an error.

Default value: The value of the option --temp=<scanning temporary files location>

The specified location must exist and must have "rwx" permissions for the user who owns the
SAVAPI process.

Anti-malware SDK - Cross Platform (SAVAPI) 39



3 Anti-malware SDK (SAVAPI) Service

 Note The directory must exist on an executable file system, since SAVAPI will try to load and
execute the files from that path. In order to optimize some internal processes, it is recommended to
have both installation and modules directories on the same partition.

 Note This option will be ignored if the option --duplicate-modules is disabled.

• AttachToGuard

AttachToGuard <0|1>

The SAVAPI Service will register with the Avira Realtime Protection (Guard) service, to prevent the
Guard service from scanning the files that are scanned by the SAVAPI Service.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1 (enabled).

 Note This option is available only on Windows systems.

• DuplicateModules

DuplicateModules <0|1>

Activates the usage of modules files duplication in order to perform updates without disrupting the
service.

Available values: 0 (disabled) or 1 (enabled).

Default value: 0 (disabled).

For detailed information, see Non-disruptive service update.

• FopsLib

FopsLib <path/to/fops/library>

Specifies the location of SAVAPI’s fops plug-in library.

Available values: Only absolute paths are accepted. Relative paths will not be accepted and the
service will exit with an error.

Default value: Internal SAVAPI fops implementation will be used.

• FopsLibParams

FopsLibParams "<blank separated list of parameters>"

Specifies the SAVAPI’s external fops library blank parameters.

Available values: A list of parameters separated by blank spaces.

Default value: No parameters will be sent to SAVAPI external fops library.

• SocketPermissions

SocketPermissions <mode>

Specifies the permissions for the UNIX local socket.

Available values: mode permissions

Default value: The socket file is created with the same user/group as the running SAVAPI
Service and with mode=0600. The socket permissions will also be used when creating directories
from the socket file location.

 Note This option is not available on Windows systems.

Anti-malware SDK - Cross Platform (SAVAPI) 40



3 Anti-malware SDK (SAVAPI) Service

• CreateSocketDir

CreateSocketDir <value>

If this option is enabled and the provided socket file path does not exist, SAVAPI Service creates the
parent directory of the socket file at startup.

For more details, see the description of the command line option --socket-file=<socket file location>
and the configuration file option ListenAddress.

Available options: 0 (disabled) or 1 (enabled).

Default value: 0.

 Note This option is not available on Windows systems.

 Connection-related options

• Listen Address

Specifies the SAVAPI Service listening interface.

Syntax for TCP connections:

ListenAddress <inet:port[@host]>

The host can be either an IPv4 address or a hostname, in any accepted format (dotted or not):
decimal, hexadecimal, octal.

Syntax for UNIX local sockets connections:

ListenAddress <unix:/path/to/AF_UNIX/socket>

For more details about the usage of UNIX local sockets, see the description of the command line
option --socket-file=<socket file location> .

Available values: listening interface location.

Examples:

Bind to TCP port 3333 on local host: ListenAddress=inet:3333

Bind to TCP port 4444 on loop back interface: ListenAddress=inet:4444@127.0.0.1

Bind to TCP port 5555 on public interface: ListenAddress=inet:5555@testcomputer

Bind to UNIX local socket "/var/tmp/.SAVAPI": ListenAddress=unix:/var/tmp/.SAVAPI

Default value: '/var/tmp/.SAVAPI' on UNIX. There is no default value on Windows.

• ConnectionTimeout

ConnectionTimeout <value-in-sec>

Specifies the timeout in seconds for the worker connection. A value of "0" means no timeout.

Available values: 0 – INT32_MAX.

Default value: 60.

Available only in daemon/service mode.

• ProtocolStrict

ProtocolStrict <0|1>

If set, SAVAPI closes the connection for unknown protocol commands, otherwise the connection is
kept open whilst the unknown commands are discarded.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1 (enabled)

Anti-malware SDK - Cross Platform (SAVAPI) 41



3 Anti-malware SDK (SAVAPI) Service

 Note: It is strongly recommended to keep this option enabled in order to mitigate against
Cross-site request forgery attacks.

• Proxy

Proxy <proxy-server>

Specifies the connection proxy server.

Available values: Valid http/socks proxy server.

Examples:

Proxy=10.0.0.1:3128

Proxy=http://proxy-server:3128

Proxy=socks4://socks-proxy-server

Proxy=http://username:mailto:password@proxy-server:3128

Default value: none

 Note

– To specify a port number in this string, append [port] to the end of the host name. If not
specified, SAVAPI will use the port 1080 as default.

– The proxy string may be prefixed with [scheme]:// to specify the kind of proxy to be used.
Supported schemes are: http://, socks4://, socks4a:// and socks5://.

– If no protocol is specified, the proxy will be treated as a HTTP proxy server.

– If the proxy requires authentication, the credentials can be specified by adding
username:password before the host name, as shown in one of the examples above.

– If no proxy is provided, SAVAPI will try to read it from other sources, in the following order:
Internet Explorer settings (for Windows systems only), Winhttp settings (for Windows systems
only), environment variables in the following order: https_proxy, HTTPS_PROXY, http_proxy,
HTTP_PROXY, all_proxy, ALL_PROXY. Please note that the no_proxy variable is not
considered as environment variable when using the --system-proxy command. See also --
system-proxy

– Winhttp proxies are set using proxycfg / netsh tools. For x64 Windows operating systems it is
important to set Winhttp info in the proper registry. For SAVAPI 32 bits version, it will try to read
Winhttp settings from Wow6432Node registry root. In order to set proxy information there, the
user must run proxycfg / netsh in the folder C:\Windows\SysWOW64. This is not needed for 32
bits Windows operating systems or, when SAVAPI 64 bits is used (proxycfg / netsh can be called
from any folder).

– For Windows systems, please note that Internet Explorer settings will be available only when
running SAVAPI as a process, and not as a service.

– If no proxy is found in any of the sources mentioned above, SAVAPI will use a direct connection.

– Please note that although the HTTPS proxy scheme is accepted, HTTP will be used instead
for proxy tunneling. There is no support for HTTPS proxies, but the scheme is still accepted for
backward compatibility reasons. HTTPS is supported for APC and avupdater communications
with Avira servers, but the already encrypted traffic will not be re-encrypted for the proxy
tunneling.

 Scan-related options

• FPC

FPC <0|1>

Anti-malware SDK - Cross Platform (SAVAPI) 42

mailto:password@proxy-server:3128


3 Anti-malware SDK (SAVAPI) Service

Enables or disables "False Positive Control", that cross-checks detections against a known list of
false positives (stored in the Avira FPC Cloud).

Available values: 0 (disabled, default) or 1 (enabled)

Default value: 0 (disabled)

• FPCTimeout

FPCTimeout <seconds>

Specifies the number of seconds SAVAPI will wait for an FPC response before timing out. This
value is applied individually for each scanned object.

Available values: 0 - 86400

Default value: 20

A value of 0 (zero) sets the wait time to infinity.

The value must be smaller than ScanTimeout

• FPCBlackoutTimeout

FPCBlackoutTimeout <seconds>

Specifies the number of seconds SAVAPI will wait in blackout, before checking that the connection
to the Avira FPC Cloud has been re-established.

Available values: 1 - 86400

Default value: 300

• FPCBlackoutRetries

FPCBlackoutRetries <count>

Specifies the number of consecutive timeouts allowed before declaring FPC unreachable.

Available values: 0 - 32767 (0 - INT16_MAX)

Default value: 5

A value of 0 (zero) makes SAVAPI always try to contact the Avira FPC Cloud, effectively disabling
the blackout mechanism.

The count applies to all items being scanned (for instance objects inside an archive).

• APCMode

APCMode <auto|disabled|check-only|full>

Specifies the mode in which APC will be used for scanning files.

Available values:

auto – will try to activate full mode if possible, otherwise APC will be set to disabled.

disabled – APC scanning disabled

check-only – only send file hashes to the APC

full – complete APC scanning functionality (send file hashes, upload files)

Default value: auto

• APCCacheSize

APCCacheSize <size>

Sets the maximum allowed size for APC cache size.

Available values: 0 - 104857600 (0 - 100 MB)

Default value: 5M

Anti-malware SDK - Cross Platform (SAVAPI) 43



3 Anti-malware SDK (SAVAPI) Service

A value of "0" means that the APC cache is disabled. <size> can include K or M as a label.
Otherwise the number is assumed to be in bytes. A value below 1024 will be automatically set to
1024.

Examples: 100M or 32K. (1K=1024 bytes. 1M=1024^2 bytes.)

• APCCacheDumpFile

APCCacheDumpFile <0|1>

Enable APC cache dump. When SAVAPI starts, an existing cache from the previous dump will be
imported, if there is any.

Available values: 0 (disabled), 1 (enabled)

Default value: 1 (enabled)

• APCCacheDumpFilePath

APCCacheDumpFilePath </path/to/dump/file>

Specifies the cache dump file path.

Available values: Only absolute paths are accepted. Relative paths are not accepted and the
service will exit with an error.

Default value: Default Operating System temporary folder/ savapi_apc_cache_XXXXXXXX.dat

• APCConnectionTimeout

APCConnectionTimeout <time-in-seconds>

Specifies the number of seconds SAVAPI will wait for establishing a connection to APC, before
timing out. This value applies to each object scanned with APC (for example, a PE file in an
archive). This value must be smaller than APCScanTimeout.

Available values: 0 - 86400 (1 second - 24 hours)

Default value: 20

A value of "0" means that SAVAPI will wait indefinitely to establish a connection to APC.

• APCScanTimeout

APCScanTimeout <time-in-seconds>

Specifies the number of seconds SAVAPI will wait for data transfer to/from APC before timing out.
This value applies to each scanned object (for example, a file in an archive). This value must be
greater than APCConnectionTimeout and smaller than ScanTimeout.

Available values: 0 - 86400 (1 second - 24 hours)

Default value: 30

A value of "0" means that SAVAPI will wait indefinitely for data transfer to/from APC.

• APCBlackoutRetries

APCBlackoutRetries <value>

Specifies the maximum number of consecutive timeouts allowed before declaring APC as
unreachable.

Available values: 0 - 32767 (0 - INT16_MAX)

Default value: 5

A value of "0" tells SAVAPI to always attempt to use APC for scanning files.

• APCBlackoutTimeout

APCBlackoutTimeout <time-in-seconds>

Specifies the number of seconds after which SAVAPI will try to establish another connection to APC.

Anti-malware SDK - Cross Platform (SAVAPI) 44



3 Anti-malware SDK (SAVAPI) Service

Available values: 1 - 86400 (1 second - 24 hours)

Default value: 300

• APCCertDir

APCCertDir <path/to/the/cert/dir>

Specifies the location of the certificate file.

Available values: Only absolute paths are accepted. Relative paths will not be accepted and the
service will exit with an error.

Default value: The SAVAPI Service folder (the location where the SAVAPI Service binary resides).

 Note The name of the certificate must be cacert.crt, otherwise the APC functionality will not
work.

• APCCheckRiskRatingLevel

APCCheckRiskRatingLevel <value>

This option sets a minimum threshold for hash requests sent to Avira Protection Cloud regarding
the risk rating of the file. The risk rating is based on a frequently updated mathematical model to
evaluate the risks posed by a certain file.

A threshold of 0 allows hash requests to be sent even if the files have a very low risk rating, while a
value of 7 allows hash requests only for files with the highest assumed risk.

Available values: 0 - 7 (0=very low risk, 2=low risk, 3=moderate risk, 4=high risk, 7=very high risk)

Default value: 4

• APCUploadRiskRatingLevel

APCUploadRiskRatingLevel <value>

This option sets a minimum threshold for uploads into the Avira Protection Cloud regarding the risk
rating of the file. The risk rating is based on a frequently updated mathematical model to evaluate
the risks posed by a certain file.

A threshold of 0 uploads files even if they have a very low risk rating, while a value of 7 uploads only
the files with the highest assumed risk.

Specifies the pre-upload filter threshold for unknown files.

An unknown file will be uploaded to APC only if the malware probability is greater than or equal to
this threshold.

Available values: 0 - 7 (0=very low risk, 2=low risk, 3=moderate risk, 4=high risk, 7=very high risk)

Default value: 4

 Note If APCCheckRiskRatingLevel is greater than APCUploadRiskRatingLevel, the file will be
uploaded only if the malware probability is greater than or equal to APCCheckRiskRatingLevel.

• APCPEMode

APCPEMode <disabled|check-only|full>

This option specifies the mode in which APC will be used for scanning portable executable (PE)
files.

Available values:

disabled – PE files will not be scanned with APC

check-only – only hashes of PE files will be checked with APC

full – full APC scanning functionality for PE files

Anti-malware SDK - Cross Platform (SAVAPI) 45



3 Anti-malware SDK (SAVAPI) Service

Default value: full

 Note When APCMode is "check-only", PE files will not be uploaded even if APCPEMode is "full".

• APCELFMode

APCELFMode <disabled|check-only|full>

This option specifies the mode in which APC will be used for scanning ELF (UNIX executable) files.

Available values:

disabled – ELF files will not be scanned with APC

check-only – only hashes of ELF files will be checked with APC

full – full APC scanning functionality for ELF files

Default value: disabled

 Note When APCMode is "check-only", ELF files will not be uploaded even if APCELFMode is
"full". This option depends on the value of APCMode. Full APC ELF functionality also depends on
APC backend settings.

• APCMachOMode

APCMachOMode <disabled|check-only|full>

This option specifies the mode in which APC will be used for scanning Mach-O and Apple Universal
Binary files.

Available values:

disabled – Mach-O files will not be scanned with APC

check-only – only hashes of Mach-O files will be checked with APC

full – full APC scanning functionality for Mach-O files

Default value: disabled

 Note When APCMode is "check-only", Mach-O files will not be uploaded even if APCELFMode
is "full". This option depends on the value of APCMode. Full APC Mach-O functionality also
depends on APC backend settings.

• APCFileExtensionsPolicy

APCFileExtensionsPolicy <auto|custom>

This option specifies the policy for the files that will be scanned with APC.

Available values:

auto – all file extensions supported by SAVAPI internal list will be scanned with APC

custom – user-defined list of extensions to be scanned with APC

Default value: custom

 Note Setting this option will reset APCFileExtensionsDisabled, APCFileExtensionsCheckOnly and
APCFileExtensionsFull lists. This option depends on the global APCMode.

• APCFileExtensionsDisabled

APCFileExtensionsDisabled <extensions>

This option specifies a list of extensions for the files which will not be scanned with APC.

Available values: A string containing extensions, separated by semicolons

Anti-malware SDK - Cross Platform (SAVAPI) 46



3 Anti-malware SDK (SAVAPI) Service

Example: .xlsx;.pdf;.doc

Default value: None

 Note This option has a higher priority and will refine the APCFileExtensionsPolicy option. This
option depends on the global APCMode.

• APCFileExtensionsCheckOnly

APCFileExtensionsCheckOnly <extensions>

This option specifies a list of extensions for the files that will be hash-checked with APC.

Available values: A string containing extensions, separated by semicolons

Example: .xlsx;.pdf;.doc

Default value: None

 Note This option has a higher priority and will refine the APCFileExtensionsPolicy option. This
option depends on the global APCMode.

• APCFileExtensionsFull

APCFileExtensionsFull <extensions>

This option specifies a list of extensions for the files that will be hash-checked or uploaded to APC.

Available values: A string containing extensions, separated by semicolons

Example: .xlsx;.pdf;.doc

Default value: None

 Note This option has a higher priority and will refine the APCFileExtensionsPolicy option. This
option depends on the global APCMode.

• ScanTemp

ScanTemp </path/to/temporary/folder>

Sets the temporary folder used for scan related operations. SAVAPI may also use other temporary
folders for non-scan operations.

Available options: Only absolute paths are accepted; relative paths will not be accepted and the
service will exit with an error.

Default value: The default temporary folder of the Operating System.

 Note It is recommended for the location to not be a folder that contains sensitive files, such as
SAVAPI binaries or configuration files.

• ArchiveScan

ArchiveScan <value>

Activates archive detection and scanning.

Available options: 0 (disabled) or 1 (enabled).

Default value: 0.

• ArchiveMaxSize

ArchiveMaxSize <size>

Sets the maximum allowed size for any file within an archive, mailbox or email.

Available values: File sizes up to INT64_MAX bytes.

Anti-malware SDK - Cross Platform (SAVAPI) 47



3 Anti-malware SDK (SAVAPI) Service

Default value: 1073741824

The value "0" means the maximum allowed value (INT64_MAX bytes).

<size> can include K, M or G as a label. Otherwise the number is assumed to be in bytes.
Examples: "100M" or "32K". (1K = 1024 bytes. 1M = 1024^2 bytes. 1G = 1024^3 bytes.)

This setting is ignored if ArchiveScan, MailboxScan and MimeScan are all disabled.

• ArchiveMaxRec

ArchiveMaxRec <recursion-level>

Sets the maximum allowed recursion within an archive, mailbox or email.

Available values: 0 – 1000.

Default value: 200.

This option is limited to 1000 recursion levels.

A value of "0" means the maximum allowed value (1000 recursion levels).

This setting is ignored if ArchiveScan, MailboxScan and MimeScan are all disabled.

• ArchiveMaxRatio

ArchiveMaxRatio <expansion-factor>

Sets the maximum allowed decompressing-ratio within an archive, mailbox or email. The
decompression will be aborted as soon as the limit is exceeded. E.g. For a 1MB compressed file
and ArchiveMaxRatio 150, the decompression will be aborted when the uncompressed file exceeds
150MB.

Available values: 0 – INT32_MAX

Default value: 150.

A value of "0" means the maximum allowed value (INT32_MAX).

This setting is ignored if ArchiveScan, MailboxScan and MimeScan are all disabled.

• ArchiveMaxCount

ArchiveMaxCount <count>

Sets the maximum allowed number of files within an archive, mailbox or email.

Available values: 0 - INT64_MAX

Default value: 0

A value of "0" means the maximum allowed value (INT64_MAX).

This setting is ignored if ArchiveScan, MailboxScan and MimeScan are all disabled.

• MailboxScan

MailboxScan <0|1>

Activates detection and scanning of mailboxes.

Available values: 0 (disabled) or 1 (enabled)

Default value: 0

• HeurMacro

HeurMacro <0|1>

Activates heuristic macro detection.

Available options: 0 (disabled) or 1 (enabled)

Default value: 1

Anti-malware SDK - Cross Platform (SAVAPI) 48



3 Anti-malware SDK (SAVAPI) Service

• HeurLevel

HeurLevel <0-x>

Sets the heuristic level for the engine.

Available values:

0 - disable heuristic detection.

1 - lazy heuristic detection. This is the lowest possible mode. Detection is not very good, but the
false positives number will be low.

2 - normal heuristic detection. This is the recommended heuristic detection.

3 - high heuristic detection. This is the highest possible mode, but it will also increase the number of
false positives.

Default value: 2

• DetectAdspy

DetectAdspy <0|1>

Activates detection for software that displays advertising pop-ups or sends userspecific data to third
parties without the user's consent and might therefore be unwanted.

ADSPY denotes adware or spyware. This kind of malware is able to change browser settings, e.g.
by manipulating registry settings or by using NTFS-streams. Very often IE-exploits are used to
manipulate the browserhelp.dll.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1

• DetectAdware

DetectAdware <0|1>

Activates the detection of software that displays banner ads or pop-up windows through a bar that
appears on a computer screen.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1

• DetectAppl

DetectAppl <0|1>

Activates detection for applications of uncertain origin or which might be hazardous to use.

Available values: 0 (disabled) or 1 (enabled).

Default value: 0

• DetectBdc

DetectBdc <0|1>

Activates detection for Backdoor-Client programs. Such programs are used to spy out or change
data on a computer.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1

• DetectDial

DetectDial <0|1>

Activates detection for Dial-Up programs, that charge for a connection fee.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1

Anti-malware SDK - Cross Platform (SAVAPI) 49



3 Anti-malware SDK (SAVAPI) Service

• DetectGame

DetectGame <0|1>

Activates game detection.

Available values: 0 (disabled) or 1 (enabled).

Default value: 0

• DetectHiddenExt

DetectHiddenExt <0|1>

Activates the detection of hidden file extensions. The concerning file contains an executable, which
is disguised by a harmless file extension.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1

• DetectJoke

DetectJoke <0|1>

Activates the detection of joke programs that usually does not contain malicious code.

Available values: 0 (disabled) or 1 (enabled).

Default value: 0

• DetectPfs

DetectPfs <0|1>

Activates the detection of fraudulent software, also known as "scareware" or "rogueware" that
pretends that your computer is infected by viruses or malware. The term "PFS" (Possible Fake
Software) describes a software that usually requires a fee but has no functionality or installs other
suspicious components.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1

• DetectPhish

DetectPhish <0|1>

Activates Phishing detection. Phishing is a technique that often tries to persuade the user to reveal
personal information, such as usernames, passwords, and credit card information, by redirecting the
user to fake websites where this personal information is requested.

Available values: 0 (disabled) or 1 (enabled).

Default value: 1

• DetectSpr

DetectSpr <0|1>

Activates the detection of programs that violate the private domain (Security Privacy Risk). This
concerns software that may be able to compromise the security of your system, initiate unwanted
program activities, damage your privacy or spy on your user behavior and could therefore be
unwanted.

Available values: 0 (disabled) or 1 (enabled).

Default value: 0

• DetectPua

DetectPua <0|1>

Anti-malware SDK - Cross Platform (SAVAPI) 50



3 Anti-malware SDK (SAVAPI) Service

Activates the detection of Potentially Unwanted Applications. These are hidden applications,
unknowingly downloaded alongside legitimate apps which clutter your PC with ads, hijack your
browser, slow down your PC – and frequently collect data on what you click on.

Available values: 0 (disabled) or 1 (enabled)

Default value: 1

• DetectAllTypes

DetectAllTypes <0|1>

Activates/ deactivates all detection types: DetectAdware, DetectAdspy, DetectAppl,
DetectBdc, DetectDial, DetectGame, DetectHiddenExt, DetectJoke, DetectPfs,
DetectPhish, DetectPua, DetectSpr.

Available values: 0 (all disabled) or 1 (all enabled).

Default value: There is no default value for this option.

 Note If DetectAllTypes is active, it will override the settings for all the other Detect-options.

• ScanTimeout

ScanTimeout <time-in-seconds>

Sets the maximum number of seconds allowed to scan a file before aborting.

Available values: 0 - 86400 (1 second - 24 hours)

Default value: 0 (disabled).

• Repair

Repair <0|1>

Activates the repairing of infected files. The actual repairing occurs during the "SCAN" request.
Available options: 0 (disabled) or 1 (enabled).

Default value: 0

• SavapiNotifyRepair

SavapiNotifyRepair <0|1>

Activates notification for a repairable infected file.

Available options: 0 (disabled) or 1 (enabled).

Default value: 0

• SavapiNotifyOffice

SavapiNotifyOffice <0|1>

Activates the detection of Microsoft Office OLE documents.

Available options: 0 (disabled) or 1 (enabled).

Default value: 0

• SavapiNotifyOfficeMacro

SavapiNotifyOfficeMacro <0|1>

Activates the detection of macros in Microsoft Office OLE documents.

Available options: 0 (disabled) or 1 (enabled).

Default value: 0

• SavapiNotifyOfficeMacroAutostart

Anti-malware SDK - Cross Platform (SAVAPI) 51



3 Anti-malware SDK (SAVAPI) Service

SavapiNotifyOfficeMacroAutostart <0|1>

Activates the detection of macros with auto-start enabled in Microsoft Office OLE documents.

Available options: 0 (disabled) or 1 (enabled).

Default value: 0

• SavapiNotifyAlertURL

SavapiNotifyAlertURL <0|1>

Activates the notification with the Avira virus description URL.

Available options: 0 (disabled) or 1 (enabled).

Default value: 0

 Note This option does not display the alert URLs when the file is detected as malware by APC.

• AlertURL

AlertURL <alert_url>

Specifies the Avira virus description URL.

Available values: Virus description URL. The URL must contain the string "?q=%1" for validation
purposes. The keyword '%1' passes the virus name.

Default value: http://www.avira.com/en/threats?q=%1

• ScanMode

ScanMode <SMART | ALL | EXTLIST>

Sets the scanning method.

Available options:

- SMART

The files scanned for malware are chosen by SAVAPI. The choice is made based on the file's
content. This is the recommended setting.

- ALL

All files are scanned for malware, no matter their content or extension.

- EXTLIST

All files that match a predefined internal list of extensions are scanned for malware content. Files
inside archives are not filtered by extension.

 Important This predefined list of extensions EXTLIST cannot be altered or changed.

Default value: SMART

• ReportEncryptedMime

ReportEncryptedMime <0|1>

Activates reporting of encrypted mime emails.

Available options: 0 (disabled) or 1 (enabled).

Default value: 0

 Note This setting is ignored if ArchiveScan, MailboxScan and MimeScan are all disabled.

• MimeScan

Anti-malware SDK - Cross Platform (SAVAPI) 52



3 Anti-malware SDK (SAVAPI) Service

MimeScan <0|1>

Activates detection and scanning of emails.

Available values: 0 (disabled) or 1 (enabled)

Default value: 1

• MalwareNamesDir

MalwareNamesDir </path/where/to/create/the/file>

Sets the directory where SAVAPI should create a file containing the extracted malware names.

This option is ignored, if the option MalwareNamesExtract is disabled.

For more information about extracting malware names, see 2.6 Extracting malware names.

Available options: Only absolute paths are accepted; relative paths will not be accepted and the
service will exit with an error.

Default value: The SAVAPI scanning temporary path.

• MalwareNamesExtract

MalwareNamesExtract <0|1>

Enables/ disables the extraction of malware names from memory to disk. You can specify the
directory path where the file will be created, by using the option MalwareNamesDir.

For more information about extracting malware names, see 2.6 Extracting malware names.

Available values: 0 (disabled) or 1 (enabled).

Default value: 0 (disabled).

Since the malware names file is needed by SAVAPI, it is recommended not to alter it. If the file
is deleted, moved or its content is modified, the engine may be unable to find the names of the
viruses.

If the file has been altered, when first scanning an infected file, the terminal answer is set to "319
INCOMPLETE VDF_READ_ERROR". Then, subsequent SCAN commands would directly return the
error "350 Failed to read VDF file".

Example:

SCAN infected_object

[310 heur_virus_1] (heuristic is detected w/o the VDFs)

319 INCOMPLETE VDF_READ_ERROR

SCAN any_type_of_file

350 Failed to read VDF file

In order to fix the problem, you must restart the SAVAPI Service.

 Logging-related options

• LogFileName

LogFileName </path/to/log/file>

Specifies the log file location and name. If this parameter is set, then file logging is activated.

Available options: Only absolute paths are accepted; relative paths will not be accepted and the
service will exit with an error.

Default value: None.

• ReportLevel

ReportLevel <0-3>

Anti-malware SDK - Cross Platform (SAVAPI) 53



3 Anti-malware SDK (SAVAPI) Service

Specifies the log verbosity level.

Available values:

0 Log errors

1 Log errors and alerts

2 Log errors, alerts, warnings and info

3 Log errors, alerts, warnings, info and debug messages

Default value: 0

 Note "alerts" record information about potential malicious code.

• LogRotate

LogRotate <0|1>

Available options: 0 (disabled) or 1 (enabled).

Default value: 0 (disabled) on UNIX; 1 (enabled) on Windows.

Only 10 log files will be created during log rotation. Older log files will be deleted after the limit is
reached and new log files will be created. See LogFileSize for more details.

• LogFileSize

LogFileSize <size>

Sets the maximum allowed size for the log file.

Available values: File size up to INT64_MAX bytes.

Default value: 2M.

If log rotation is enabled (LogRotate=1), the log file is closed when the maximum size is reached;
a new file is created and used for logging (i.e. the file "log" is renamed to log.001, and the logging will
continue to the new log file). If rotation is disabled (LogRotate=0), no action is performed when
maximum size is reached, meaning that the logging will stop.

Size can include K, M, or G as a label. Otherwise the number is assumed to be in bytes. Examples:
"100M" or "32K". (1K = 1024 bytes. 1M = 1024^2 bytes. 1G = 1024^3 bytes.)

• LogTemplate

LogTemplate = ${DAY}/${MONTH}/${YEAR}

${HOUR}:${MINUTE}:${SECOND} ${HOST} ${PROGRAM}[${PID}]:

${SOURCE}: ${LEVEL}: ${MSG}

Enables the templates for log messages.

Available templates are:

- SOURCE,

- LEVEL,

- YEAR,

- MONTH,

- DAY,

- HOUR,

- MINUTE,

- SECOND,

- WEEKDAY,

- TZOFFSET,

Anti-malware SDK - Cross Platform (SAVAPI) 54



3 Anti-malware SDK (SAVAPI) Service

- TZ,

- HOST,

- FULLHOST,

- PROGRAM,

- PID,

- MSG,

- TID,

- WINDATE,

- WINTIME

Default value: “${DAY}/${MONTH}/${YEAR} ${HOUR}:${MINUTE}:${SECOND} ${HOST}
${PROGRAM}[${PID}]: ${SOURCE}: ${LEVEL}: ${MSG}”.

• SyslogFacility

SyslogFacility <value>

Specified the facility for the UNIX default system logger.

Available values: Desired system logger facility.

Default value: "user".

 Note This option is available only on UNIX systems.

• DisableSystemLogger

DisableSystemLogger <0|1>

Activates/ deactivates the default operating system logger.

Available options: 0 (system logger enabled) or 1 (system logger disabled).

Default value: 0 (system logger enabled).

3.3.3 Protocol
Once a TCP/IP connection is established, the SAVAPI TCP/IP protocol can be used. The protocol
specifies exchange of commands and information using synchronous communication in the form of
messages. The messages consist in text lines (ASCIIPRINT, LOCALE, or UTF-8) followed by a new
line.

Synchronous communication proceeds by sending a request and receiving a response. Responses
include status codes to help classify the response. Some status codes imply that other responses are
guaranteed to follow (thus informing the application that it must not yet send another request).

The general form of messages is as follows:

• request:

<command> <data>\n (for UNIX)

<command> <data>\r\n (for Windows)

• response:

<status-code> <data>\n (for UNIX)

<status-code> <data>\r\n (for Windows)

The SAVAPI Service initiates the communication by sending the following line:

100 SAVAPI:4.0

where '0' (in '4.0') is the minor version number of the SAVAPI protocol. The minor version number of the
protocol is to be changed for extensions in the protocol.

Anti-malware SDK - Cross Platform (SAVAPI) 55



3 Anti-malware SDK (SAVAPI) Service

Any 4.x version of the SAVAPI protocol must be 100% backwards compatible to a lesser 4.x version.
If any incompatibilities should be introduced, the major version number ('4') of the protocol must be
changed.

 Note '4.0' is the protocol version number, not a version number for the SAVAPI Service binaries
themselves.

The initial SAVAPI "greeting" uses <10> as its new line.

 Response Status Codes

The following table contains a list of status codes that will be returned after various requests.

Not all status codes apply to all requests. (Non-terminal responses imply that more responses are
guaranteed to follow.)

Code Definition Type

100 Information Typically as a response to a request

199 "Pong" response with optional ping-text Terminal

200 File was not an archive, no alert found Terminal

210 File was an archive, no alert found Terminal

220 A connection timeout occurred Terminal

310 Alert found Non-terminal

319 Scan finished, alert found Terminal

350 Error occurred Terminal

401 Low-level alert information Non-terminal

404 Too many clients connected Terminal

420 Repairable alert found (the alert itself will
follow)

Non-terminal

421 Microsoft Office OLE document found Non-terminal

422 Microsoft Office OLE document with
macros found

Non-terminal

423 Microsoft Office OLE document with
macros having auto-start enabled found

Non-terminal

430 Alert URL Non-terminal

450 Plugin response Non-terminal

499 Information Non-terminal

 Note Code " 300: File was not an archive, alert found " is obsolete.

The new engine can detect multiple malware in a regular file – non-archive file, without embedded
objects (PDF, chm, etc.).

The only way to report multiple infections in a file is to list all non-terminal alerts and then to report the
end of the scan. This is happening only if there is at least one malware detection (this means "alert"). If
the file doesn't contain malware, the normal code 200 is returned.

 Requests

The following sections describe the various requests that are allowed with the SAVAPI protocol. Any
non-specified requests will result in an error response "350 <error-message>".

All request descriptions are followed by a list of possible status codes that can be used in response
messages.

 Note All requests apply to the current session, with the exception of RELOAD. For more details,
see the RELOAD command description).

SAVAPI will consider all numeric values as decimal (base 10).

Anti-malware SDK - Cross Platform (SAVAPI) 56



3 Anti-malware SDK (SAVAPI) Service

SET (write only)

"SET" requests are available to configure SAVAPI. Usually a "SET" request also has a "GET" request
counterpart to retrieve current settings. However, the following commands do not have a "GET"
counterpart and are therefore labelled as "write only".

• SET PRODUCT <id>

Set the key-id that is required by the application. SAVAPI will check if the key-id is within the license
and that it is not expired. If it is available and is valid, the application is free to use SAVAPI. If not,
this command and all SCAN requests will result in an error response, for example: "350 operation
not allowed (license restriction)".

(100, 350)

GET (read only)

"GET" requests are available to retrieve current SAVAPI settings. The response to a "GET" request is in
the form of:

100 <key>:<value>

This makes it possible to combine multiple "GET" requests into a single request:

GET <key1> <key2> <key3>

<key1>:<value1> <key2>:<value2> <key3>:<value3>

 Note If values include ':' (colon) or ' ' (space) characters, the response could be ambiguous.

Usually a "GET" request also has a "SET" request counterpart to configure SAVAPI. However, the
following commands do not have a "SET" counterpart and are therefore labelled as "read only".

• GET SAVAPI

Retrieves SAVAPI protocol version number.

(100, 350)

• GET AVE

Retrieves engine version number.

(100, 350)

• GET VDF

Retrieves VDF set version number.

(100, 350)

• GET PID

Retrieves the process-id for the SAVAPI process that is currently handling the connection.

(100, 350)

• GET EXPIRE

Retrieves the expiration date of the SAVAPI license. The date is in the form of YYYYMMDD.

(100, 350)

• GET VDF_SIGCOUNT

Retrieves the number of signatures in the VDF set.

(100, 350)

• GET SELECTABLE_DETECT

Retrieves the various types that can be detected (and dynamically turned on/off). The types are
returned as a comma separated list.

Anti-malware SDK - Cross Platform (SAVAPI) 57



3 Anti-malware SDK (SAVAPI) Service

(100, 350)

• GET DESCR_DETECT_<type>

Retrieves the English description for the given type. <type> is one of the types returned by "GET
SELECTABLE_DETECT".

(100, 350)

• GET MALWARE_NAMES_FILE

Retrieves the file containing the extracted malware names.

For more information about extracting malware names, see 2.6 Extracting malware names.

(100, 350)

GET/SET (read/write)

"SET" requests are available to configure SAVAPI. For the following requests, a "GET" counterpart
is also available and these are therefore labelled as "read/write". The "GET" response will return the
same data that is provided with the "SET" request (the representation of the data may be different. For
example, a "SET" request with "10K" will lead to a "GET" response with "10240".)

 Note Almost all SET commands exist in the same format in the configuration file. Exception: SET
CONF.

For more details, see 3.3.2 Configuration file options.

• CWD <directory>

Sets the current working directory for SAVAPI. Thus you don’t need to specify full paths in file
names anymore.

Default value: The SAVAPI Service binary location.

(100, 350)

• CONF <configuration-file>

Specifies the configuration file used. The configuration file will be (re-)read as part of this request.
Global SAVAPI configuration parameters will be ignored and only workerspecific parameters will be
read from the original configuration file. There is no default value.

(100, 350)

The following parameters will be ignored when a SET CONF command is executed:

User, Group, CreateSocketDir, ListenAddress, AttachToGuard, LogRotate,
LoadPlugins, SocketPermissions, SyslogFacility, ModulesDir, AveDir, KeyFile,
VdfDir, APCCertDir, PidDir, FopsLib, MalwareNamesExtract, MalwareNamesDir,
LogTemplate, LogFileSize, ReportLevel, DisableSystemLogger, PoolScanners,
PoolConnections, APCCacheSize, APCCacheDumpFile, APCCacheDumpFilePath,
APCBlackoutRetries, APCBlackoutTimeout, DuplicateModules, Proxy, LogFileName.

• ARCHIVE_SCAN <0|1>

Activates archive detection and scanning.

Default value: 0

(100, 350)

• ARCHIVE_MAX_SIZE <size>

Sets the maximum allowed size for any file within an archive, mailbox and email. A value of "0"
means the maximum allowed value. A size can include K, M or G as a label. Otherwise the number
is assumed to be in bytes. Examples: "100M" or "32K". (1K = 1024 bytes. 1M = 1024^2 bytes. 1G =
1024^3 bytes.)

Anti-malware SDK - Cross Platform (SAVAPI) 58



3 Anti-malware SDK (SAVAPI) Service

This setting is ignored, if ARCHIVE_SCAN, MAILBOX_SCAN and MIME_SCAN are all disabled.

Default value: 1073741824

(100, 350)

• ARCHIVE_MAX_REC <recursion-level>

Sets the maximum allowed recursion within an archive, mailbox and email. This option is limited to
1000 recursion levels. A value of "0" means the maximum allowed value (1000 recursion levels).
This setting is ignored, if ARCHIVE_SCAN, MAILBOX_SCAN and MIME_SCAN are all disabled.

Default value: 200

(100, 350)

• ARCHIVE_MAX_RATIO <expansion-factor>

A value of "0" means the maximum allowed value. This setting is ignored, if ARCHIVE_SCAN,
MAILBOX_SCAN and MIME_SCAN are all disabled.

Default value: 150

(100, 350)

• ARCHIVE_MAX_COUNT <count>

Sets the maximum allowed number of files within an archive, mailbox and email. A value of "0"
means the maximum allowed value. This setting is ignored, if ARCHIVE_SCAN, MAILBOX_SCAN and
MIME_SCAN are all disabled.

Default value: 9223372036854775807

(100, 350)

• MAILBOX_SCAN <0|1>

Activates detection and scanning of mailboxes.

Default value: 0

(100, 350)

• HEUR_MACRO <0|1>

Activates heuristic macro detection.

Default value: 1

(100, 350)

• HEUR_LEVEL <0-3>

Sets the heuristic level for the engine.

Available values:

0 - disable heuristic detection.

1 - lazy heuristic detection. This is the lowest possible mode. Detection is not very good, but the
false positives number will be low.

2 - normal heuristic detection. This is the recommended heuristic detection.

3 - high heuristic detection. This is the highest possible mode, but it will also increase the number of
false positives.

Default value: 2

(100, 350)

• DETECT_<type> <0|1>

Anti-malware SDK - Cross Platform (SAVAPI) 59



3 Anti-malware SDK (SAVAPI) Service

Activates detection of various other types. <type> is one of the types returned by "GET
SELECTABLE_DETECT". An additional pseudo-type (ALLTYPES) is also available to generally
represent all types. (ALLTYPES is only available for "SET" requests, and not available for "GET"
requests.)

Default values:

- DETECT_ADSPY 1

- DETECT_ADWARE 1

- DETECT_APPL 0

- DETECT_BDC 1

- DETECT_DIAL 1

- DETECT_GAME 0

- DETECT_HIDDENEXT 1

- DETECT_JOKE 0

- DETECT_PHISH 1

- DETECT_PFS 1

- DETECT_PUA 1

- DETECT_SPR 0

(100, 350)

• SCAN_TEMP <directory>

Sets the temporary directory used for scanning files. SAVAPI may use other temporary directories
for files that are not being scanned. These other directories can be specified with command-line
arguments or in a configuration file.

Default value: The default temporary folder of the Operating System.

(100, 350)

 Note It is recommended for the location to not be a directory that contains sensitive files, such
as SAVAPI binaries or configuration files.

• SCAN_TIMEOUT <time-in-seconds>

Sets the maximum number of seconds allowed to scan a file before aborting.

Default value: 0 (disabled)

(100, 350)

• TEXT_MODE <ASCII-PRINT|LOCALE|UTF-8>

Specifies the character encoding used to read requests and post results. This is covered in details
later in the section "TEXT SUPPORT".

Default value: LOCALE

(100, 350)

• REPAIR <0|1>

Activates repairing of infected files. The actual repairing occurs during the "SCAN" request.

Default value: 0 (disabled)

(100, 350)

• SAVAPI_NOTIFY_REPAIR <0|1>

Anti-malware SDK - Cross Platform (SAVAPI) 60



3 Anti-malware SDK (SAVAPI) Service

Activates notification if an infected file can be repaired. This will activate the usage of 420 status
codes.

Default value: 0 (disabled)

(100, 350)

• SAVAPI_NOTIFY_OFFICE <0|1>

Activates detection of Microsoft Office OLE documents. This will activate the usage of 421 status
codes.

Default value: 0 (disabled)

(100, 350)

• SAVAPI_NOTIFY_OFFICE_MACRO <0|1>

Activates detection of macros within Microsoft Office OLE documents. This will activate the usage of
422 status codes.

Default value: 0 (disabled)

(100, 350)

• SAVAPI_NOTIFY_OFFICE_MACRO_AUTOSTART <0|1>

Activates detection of macros with auto-start enabled within Microsoft Office OLE documents. This
will activate the usage of 423 status code.

Default value: 0 (disabled)

(100, 350)

• SAVAPI_NOTIFY_ALERTURL <0|1>

Displays alert URLs for detected alerts. This will activate the usage of 430 status codes.

Default value: 0 (disabled)

(100, 350)

 Note This option does not display the alert URLs when the file is detected as malware by APC.

• REPORT_ENCRYPTED_MIME <0|1>

Activates reporting of encrypted mime emails. This setting is ignored if ARCHIVE_SCAN,
MAILBOX_SCAN and MIME_SCAN are all disabled.

Default value: 0 (disabled)

(100, 350)

• SCAN_MODE <SMART|ALL|EXTLIST>

Sets the scanning method. Possible values are:

- ALL – All files are scanned for malware, no matter their content or extension.

- EXTLIST – Only files provided by the user, that match a list of specific extensions, are scanned
for malware content. Files inside archives are not filtered by extension.

- SMART – The files scanned for malware are chosen by SAVAPI. The choice is made based on the
file's content. This is the recommended (default) setting.

(100, 350)

• MIME_SCAN <0|1>

Activates or deactivates the detection and scanning of emails. By default MIME_SCAN is enabled. It
is recommended to always keep this option enabled.

Anti-malware SDK - Cross Platform (SAVAPI) 61



3 Anti-malware SDK (SAVAPI) Service

If MAILBOX_SCAN is enabled, emails contained in mailboxes are always scanned (no matter if
MIME_SCAN is enabled or not).

Default value: 1 (enabled)

(100, 350)

• ENCODE_FILENAMES <0|1>

Activates the filename encoding feature in the SAVAPI protocol. When activated, the path and
filename arguments of scanning commands must be encoded in their hexadecimal representation
(Every byte of the path and filename must be represented by it's hexadecimal value, with two
hexadecimal digits. For example, savapi.exe in ASCII encoding: 7361766170692e657865).

The paths and filenames in the answers received from SAVAPI will also be encoded in the same
way.

Default value: 0 (disabled)

(100, 350)

 Note This option should be used for sending paths and file names that contain control characters,
or which begin or end with white-spaces through the socket. An alternative to ENCODE_FILENAMES is
the SCAN hex_enc:// command. (see The SCAN command below).

• APC_CONNECTION_TIMEOUT <time-in-seconds>

Specifies the number of seconds SAVAPI will wait for establishing a connection to APC, before
timing out. This value applies to each object scanned by APC (for example, a PE file in an archive).
This value must be smaller than APCScanTimeout.

Default value: 20

(100, 350)

 Note This option is available only if APC was initialized.

• APC_SCAN_TIMEOUT <time-in-seconds>

Specifies the number of seconds SAVAPI will wait for data transfer to/from APC before timing out.
This value applies to each scanned object (for example, a file in an archive). This value must be
greater than APCConnectionTimeout and smaller than ScanTimeout.

• APC_CHECK_RISK_RATING_LEVEL <level>

This option sets a minimum threshold for hash requests sent to Avira Protection Cloud regarding
the risk rating of the file. The risk rating is based on a frequently updated mathematical model to
evaluate the risks posed by a certain file.

A threshold of 0 allows hash requests to be sent even if the files have a very low risk rating, while a
value of 7 allows hash requests only for files with the highest assumed risk.

Available values: 0 - 7 (0=very low risk, 2=low risk, 3=moderate risk, 4=high risk, 7=very high risk)

Default value: 4

(100, 350)

 Note This option is available only if APC was initialized.

• APC_UPLOAD_RISK_RATING_LEVEL <level>

This option sets a minimum threshold for uploads into the Avira Protection Cloud regarding the risk
rating of the file. The risk rating is based on a frequently updated mathematical model to evaluate
the risks posed by a certain file.

A threshold of 0 uploads files even if they have a very low risk rating, while a value of 7 uploads only
the files with the highest assumed risk.

Anti-malware SDK - Cross Platform (SAVAPI) 62



3 Anti-malware SDK (SAVAPI) Service

Available values: 0 - 7 (0=very low risk, 2=low risk, 3=moderate risk, 4=high risk, 7=very high risk)

Default value: 4

(100, 350)

 Note If APC_CHECK_RISK_RATING_LEVEL is greater than
APC_UPLOAD_RISK_RATING_LEVEL, the file will be uploaded only if the malware probability is
greater than or equal to APC_CHECK_RISK_RATING_LEVEL. This option is available only if APC was
initialized.

• APC_PE_MODE <DISABLED|CHECK-ONLY|FULL>

This option specifies the mode in which APC will be used for scanning portable executable (PE)
files.

Available values:

DISABLED – PE files will not be scanned with APC

CHECK-ONLY – only hashes of PE files will be checked with APC

FULL – full APC scanning functionality for PE files

Default value: full

(100, 350)

 Note When APCMode is "check-only", PE files will not be uploaded even if APC_PE_MODE is
"full". This option depends on the global APCMode.

 Note The actual behavior of hash-checks and upload of files to APC also depends on your
contractual relationship for APC services.

• APC_ELF_MODE <DISABLED|CHECK-ONLY|FULL>

This option specifies the mode in which APC will be used for scanning ELF files.

Available values:

DISABLED – ELF files will not be scanned with APC

CHECK-ONLY – only hashes of ELF files will be checked with APC

FULL – full APC scanning functionality for ELF files

Default value: full

(100, 350)

 Note When APCMode is "check-only", ELF files will not be uploaded even if APC_PE_MODE is
"full". This option depends on the global APCMode.

 Note The actual behavior of hash-checks and upload of files to APC also depends on your
contractual relationship for APC services.

• APC_MACH_O_MODE <DISABLED|CHECK-ONLY|FULL>

This option specifies the mode in which APC will be used for scanning Mach-O and Apple Universal
Binary files.

Available values:

DISABLED – Mach-O files files will not be scanned with APC

CHECK-ONLY – only hashes of Mach-O files will be checked with APC

FULL – full APC scanning functionality for Mach-O files

Anti-malware SDK - Cross Platform (SAVAPI) 63



3 Anti-malware SDK (SAVAPI) Service

Default value: full

(100, 350)

 Note When APCMode is "check-only", Mach-O files will not be uploaded even if APC_PE_MODE
is "full". This option depends on the global APCMode.

 Note The actual behavior of hash-checks and upload of files to APC also depends on your
contractual relationship for APC services.

• APC_FILE_EXTENSIONS_POLICY <AUTO|CUSTOM>

This option specifies the policy for the files that will be scanned with APC.

AUTO – all file extensions supported by SAVAPI internal list will be scanned with APC

CUSTOM – user-defined list of extensions to be scanned with APC

Default value: custom

(100, 350)

• APC_FILE_EXTENSIONS_DISABLED <extensions>

This option specifies a list of extensions for the files which will not be scanned with APC.

Available values: A string containing extensions, separated by semicolons.

Example: .xls;.bin;.doc

Default value: None

(100, 350)

 Note This option has a higher priority and will refine the APC_FILE_EXTENSIONS_POLICY
option.

• APC_FILE_EXTENSIONS_CHECK_ONLY <extensions>

This option specifies a list of extensions for the files that will be hash-scanned with APC.

Available values: A string containing extensions, separated by semicolons.

Example: .xls;.bin;.doc

Default value: None

(100, 350)

 Note This option has a higher priority and will refine the APC_FILE_EXTENSIONS_POLICY
option. This option depends on the global APCMode.

 Note The actual behavior of hash-checks and upload of files to APC also depends on your
contractual relationship for APC services.

• APC_FILE_EXTENSIONS_FULL <extensions>

Specifies a list of extensions for the files that will be hash-checked or uploaded to APC.

Available values: A string containing extensions (including the dot), separated by semicolons.

Example: .xls;.bin;.doc

Default value: None

(100, 350)

Anti-malware SDK - Cross Platform (SAVAPI) 64



3 Anti-malware SDK (SAVAPI) Service

 Note This option has a higher priority and will refine the APC_FILE_EXTENSIONS_POLICY
option. This option depends on the global APCMode.

 Note The actual behavior of hash-checks and upload of files to APC also depends on your
contractual relationship for APC services.

• FPC <0|1>

Enables or disables the FPC module for the respective session.

Available values: 0 - 1 (0=disabled, 1=enabled)

Default value: 0

(100, 350)

• FPC_TIMEOUT <time-in-seconds>

Sets the FPC timeout to the requested value.

Available values: 0 - 86400 seconds (0=infinity)

Default value: 30

(100, 350)

 The SCAN command

The most important request (and most complex) is the SCAN request. This request invokes the engine
for a specified file.

SCAN command syntax:

• regular scan

SCAN <file path>

SAVAPI scans the file with the specified file path.

• hex-encoded scan

SAVAPI decodes the <hex_encoded_file_path> from hex to binary, and scans the resulted
file without performing any conversion. The <hex_encoded_file_name> must contain only hex
characters, upper case or lower case.

• The SCAN hex_enc command expects the decoded file path's binary sequence to be exactly as
stored on disk for the specified file. As a result, SCAN hex_enc does not perform any conversions
from TEXT_MODE and may be used when locales are not available or just to avoid conversions.

 Note The SCAN hex_enc command is not supported on Windows; If the command is used,
SAVAPI returns the error message: " 350 Unsupported feature ". ENCODE_FILENAMES, whether
enabled or disabled, does not influence scanning with SCAN hex_enc.

 Note The SCAN hex_enc command accepts only absolute file paths; If the specified file path is
relative, SAVAPI returns an error message: " 350 Not an absolute path ".

• apc hash scan

SCAN apchash://apc_hash_of_file>[,<apc_hash_of_file>,...,
<apc_hash_of_file>]

SAVAPI can only scan APC hashes when APC is enabled. To compute the APC hash of a given file,
please see Computing the File Reputation extension hash using the apchash library.

For more information regarding APC hash scanning, please see Scanning the File Reputation
extension hash with SAVAPI.

Anti-malware SDK - Cross Platform (SAVAPI) 65



3 Anti-malware SDK (SAVAPI) Service

 SCAN command responses

Depending on the SAVAPI settings and the contents of the file, various responses can be returned.

• 200 <scan-keyword> [<scan-keyword> ...]

This response means that the file does not contain any alerts. Various keywords can be returned
to communicate additional information about the scan. Although no alert was found in the file,
depending on the keywords, the file may still contain an alert (i.e.: if the INCOMPLETE keyword
appears it means that only a part of the file was scanned and only that part of the file is clean. The
rest of the file might contain malware). This is a terminal response, meaning that the application is
free to make another request.

• 210 <scan-keyword> [<scan-keyword> ...]

This response is identical in format to "200". It means that the file does not contain any alerts.
However, it has the additional meaning that the file was detected as an archive and its contents
were also scanned. Since an archive has many special attributes (multiple files, compression,
recursion) there are various keywords that can be returned. Although no alert was found in the
archive, depending on the keywords, the file may still contain an alert (i.e.: if the HIT_MAX_REC
keyword appears, it means that only a part of the archive was scanned and only that part of the
archive is clean. The rest of the archive might contain malware). This is a terminal response,
meaning that the application is free to make another request.

• 220 timeout reached while waiting commands

This message means that the connection was idle for too long and it was closed by the server. For
more details regarding the connection timeout, see Connection-related options.

• 310 [fileA-in-archive[ --> fileB-in-fileA] <<< ]alert-name ; type ; english-text-message

This response means that the file contains an alert. However, it has the additional meaning that
the file was detected as an archive and its contents were also scanned. Since archives contain
files (and these files may also be archives), a type of archive recursion is present. This recursion
is represented with an additional separator " --> " (space minus minus greater-than space). This
separator is followed by the name of the file in the next level of recursion. (Note that the file name
provided with the "SCAN" request is not included.) After all recursion has been represented, a
second separator " <<< " is used (space less-than less-than less-than space). After this separator,
the alert name, alert type and an English alert description are provided. These fields are separated
by " ; " (space semi-colon space).

• The application is responsible for parsing this output. This is NOT a terminal response, meaning that
more responses are guaranteed and the application may not yet make another request. (Note that
the " <<< " separator may not appear, if the archive itself, rather than its contents, triggers the alert.)

The "310" response should not appear multiple times for a single "end file" within an archive, i.e. it
must not be possible to generate more "310" responses than the number of files to scan.

• 319 <scan-keyword> [<scan-keyword> ...]

This response means that the scanning of an alert-containing object is complete. This is a terminal
response, meaning that the application is free to make another request. This response will come
after one or more "310" responses. As with response "210", multiple keywords are returned to
describe information about the scan.

• 350 <scan-keyword> [<scan-keyword> ...]

This response is returned whenever the SCAN command cannot be performed, due to the I/O errors.
For example:

- The product ID was not previously set, i.e. " 350 Operation not allowed (license restriction) "

- SCAN was called without an argument, i.e. " 350 no file given "

- The file does not exists, i.e. " 350 File open error "

- The hex_enc argument is a relative path, i.e. " 350 Not an absolute path "

Anti-malware SDK - Cross Platform (SAVAPI) 66



3 Anti-malware SDK (SAVAPI) Service

- The argument cannot be converted in the given TEXT_MODE, i.e. " 350 Conversion error "

- The SCAN command is refused, because the engine is unable to find the name of the viruses, i.e. "
350 Failed to read VDF file "

This is a terminal response, meaning that the application is free to make another request.

• 420 [fileA-in-archive[ --> fileB-in-fileA] <<< ]alert-name ; type ; english-textmessage

The infected file is repairable. The format of this response is identical to "310". This response will
be followed (although not necessarily directly) by a "310" response with the same format. This is
NOT a terminal response, meaning that more responses are guaranteed and the application may
not yet make another request. Note: To repair the file, the repair mode must be activated and a scan
performed again. Files that have been successfully repaired will no longer cause "310" or "420"
responses.

• 421 [fileA-in-archive[ --> fileB-in-fileA] <<< ]office-type

An Microsoft Office OLE document has been found. This is NOT a terminal response, meaning that
more responses are guaranteed and the application may not yet make another request.

• 422 [fileA-in-archive[ --> fileB-in-fileA] <<< ]macro-name

An Microsoft Office OLE document containing macros has been found. This is NOT a terminal
response, meaning that more responses are guaranteed and the application may not yet make
another request.

• 423 [fileA-in-archive[ --> fileB-in-fileA] <<< ]autostart-macro-name

An Microsoft Office OLE document containing macros having auto-start enabled has been found.
This is NOT a terminal response, meaning that more responses are guaranteed and the application
may not yet make another request.

• 430 [fileA-in-archive[ --> fileB-in-fileA] <<< ]URL

A URL that will lead to detailed information about an alert found. This is NOT a terminal response,
meaning that more responses are guaranteed and the application may not yet make another
request.

 Note Code " 300: File was not an archive, alert found " is obsolete.

 Scan keywords

Here is a list of scan keywords that could appear with "200", "210" or "319" responses.

 Note Please note that scan keywords may change between releases and the application must be
prepared to handle new scan keywords.

Scan keywords Description

ABORTED Scan was aborted by signal (200, 210, 319)

APC_CONNECTION Error connecting to cloud (200, 210, 319)

APC_TEMPORARILY_DISABLED APC disabled due to many APC scan failures (200, 210, 319)

APC_DISABLED APC permanently disabled (200, 210, 319)

APC_INCOMPLETE Not completely scanned with APC (200, 210, 319)

APC_TIMEOUT APC scan timed out (200, 210, 319)

APC_AUTHENTICATION Error authenticating to cloud (200, 210, 319)

APC_QUOTA APC quota limit reached (200, 210, 319)

ENCRYPTED Contains encrypted contents (210, 319)

ENCRYPTED_MIME Contains encrypted mime emails (210, 319)

HIT_MAX_COUNT Maximum number of files reached (210, 319)

Anti-malware SDK - Cross Platform (SAVAPI) 67



3 Anti-malware SDK (SAVAPI) Service

Scan keywords Description

HIT_MAX_RATIO Maximum extraction ratio reached (210, 319)

HIT_MAX_REC Maximum recursion limit reached (210, 319)

HIT_MAX_SIZE Maximum extraction size reached (210, 319)

INCOMPLETE Not completely scanned (210, 319)

MEMORY_LIMIT Internal memory limit reached (210)

OK No problems detected (200, 210, 319)

PARTIAL Is part of a multi-volume archive (210, 319)

PROC_ERROR Processing archive (210, 319)

TIMEOUT Scan timed out (200, 210, 319)

UNSUPPORTED Archive format detected (210, 319)

VDF_READ_ERROR The engine is unable to find the viruses name (319)

If the ENCODE_FILENAMES option is activated, the path and file name arguments of the SCAN
command must be encoded in their hexadecimal representation. (Every byte of the path and file name
must be represented by it's hexadecimal value, with two hexadecimal digits. For example, savapi.exe in
ASCII encoding: 7361766170692e657865.)

The paths and file names in the answers received from SAVAPI will also be encoded in the same way.

 Note ENCODE_FILENAMES should be used for sending paths and file names that contain
control characters, or which begin or end with white-spaces through the socket. An alternative to
ENCODE_FILENAMES is the SCAN hex_enc:// command. (see The SCAN command).

 Update Support

Internet updates will occur in a background process. Updates may require the SAVAPI Service to
restart without informing the connected applications. Applications using SAVAPI must be able to handle
unexpected closing of the TCP/ IP socket and try to reestablish a connection before interpreting the
event as an error.

The avupdate component is a separate binary and it is no longer managed by SAVAPI. See 7.
Updating Anti-malware SDK (SAVAPI).

 Other commands

The following commands are also available:

• QUIT

Gracefully disconnects from SAVAPI. This signals SAVAPI that the application is finished. Rather
than providing a response, SAVAPI will close the connection. The SAVAPI Service will continue to
run. (closed socket)

• RESET

Commands SAVAPI to return to the same configuration state as upon the initial connection,
except for the case when it follows a RELOAD command. In this case, SAVAPI will return to the
configuration state after RELOAD. (100, 350)

 Note The configuration file will not be re-read.

• RELOAD

Commands SAVAPI to reload its original configuration file: the configuration file specified when the
service is started (on non-Windows systems) or registered (on Windows systems). Global SAVAPI
configuration parameters will be ignored and only worker-specific parameters will be read from the
original configuration file. This will affect only the current session and the newly opened sessions.
The existing sessions will not be affected by this command.

(100, 350)

Anti-malware SDK - Cross Platform (SAVAPI) 68



3 Anti-malware SDK (SAVAPI) Service

 Note The following parameters will be ignored when a RELOAD command is executed: User,
Group, CreateSocketDir, ListenAddress, AttachToGuard, LogRotate, LoadPlugins,
SocketPermissions, SyslogFacility, ModulesDir, AveDir, KeyFile, VdfDir, APCCertDir,
PidDir, FopsLib, MalwareNamesExtract, MalwareNamesDir, LogTemplate, LogFileSize,
ReportLevel, DisableSystemLogger, PoolScanners, PoolConnections, APCCacheSize,
APCCacheDumpFile, APCCacheDumpFilePath, APCBlackoutRetries, APCBlackoutTimeout,
vDuplicateModules, vProxy, LogFileName.

• SHUTDOWN

Commands SAVAPI Service to stop. SAVAPI will close the connection, without providing a
response. This could cause unexpected socket-close events for other connected applications.
(closed socket)

On Windows systems, because the SAVAPI Service is configured by default to restart as a failure
action, the service will be restarted by the Service Control Manager after the SHUTDOWN command
is received. The service can be stopped either with “SAVAPI –stop” command or “net stop
SAVAPI” command.

 Note This command is marked as obsolete in SAVAPI. It drops the connection and aborts any
processing, but does not stop the service. Starting with the next SAVAPI release, the command will be
removed and the service will reply with an error.

• PING [<ping-text>]

Test if the SAVAPI daemon is alive. The optional ping-text can be a maximum of 128 bytes in
length. This same text will be returned in a 199 "pong" response. This command is also useful for
synchronizing communication with SAVAPI. (199)

• HELP [<command> [<command-arg>]]

Provides available commands, arguments, and descriptions. The help output is generated using
multiple "499" responses. (100, 350)

 Other responses

• 499 informational-text

A line of informational text. This response appears, for example, after the "HELP" request. This is NOT
a terminal response, meaning that more responses are guaranteed and the application may not yet
make another request.

Signals

SAVAPI also supports signals. These are commands that are sent asynchronously to SAVAPI as a
trigger for certain actions. Signals look similar to requests but do not receive a response.

• SCAN_ABORT

SAVAPI aborts a scan and adds the "ABORTED" scan keyword to the scan response. This signal is
ignored, if SAVAPI is not currently scanning a file.

Text support

The SAVAPI protocol provides three modes for handling text. The modes can be set using the
"SET TEXT_MODE" request. Modes are applied to both incoming and outgoing data. The modes are
described below.

If invalid text is received, the SAVAPI Service will immediately drop the connection.

Since some special characters are used within the SAVAPI protocol itself, some bytes of a file name
must be converted to '?' (63) in responses. The bytes of a file name that must be converted are 10, 13,
60, 62. (Note that this does not affect SAVAPI's ability to scan and detect alerts. It is simply a cosmetic
change in a response to allow a client to reliably parse the response.)

• ASCII-PRINT

Anti-malware SDK - Cross Platform (SAVAPI) 69



3 Anti-malware SDK (SAVAPI) Service

Only printable characters of the ASCII set are considered valid characters. These include the
characters 9 and 32-126. All other character values are converted to '?' (63). This is a conservative
setting for clients that want to keep communication restricted to 7-bit printable text.

• LOCALE

All characters will be handled "as-is". It is the responsibility of the client to ensure that the SAVAPI
Service will be able to correctly interpret the text (for example, with matching locale settings between
client, service, and file system).

0-value characters will not be handled correctly in this mode. Encoding such as UTF- 16LE or
UTF-32LE are not supported by the SAVAPI TCP/IP protocol.

• UTF-8

The entire text must be correctly encoded as UTF-8. Invalid encoding will result in error responses.

3.4 Exit codes
The following table contains a list of exit codes, returned by SAVAPI Service when it completes its
execution.

Exit code Description

200 Program aborted, not enough memory available

201 Program aborted, invalid parameter

202 Program aborted, daemon not/already initialized

203 Program aborted, conversion error

204 Error parsing the command line arguments

205 Error parsing the configuration file

206 Invalid port specified (Obsolete, not used anymore)

207 Invalid IP specified (Obsolete, not used anymore)

208 Cannot start on specified interface (invalid IP/port)

209 Error on loading vdf files

210 Problem when trying to start the engine

211 Program aborted because the self check failed

212 No valid license found (Obsolete, not used anymore)

213 Error when trying to start/stop the SAVAPI Service

214 Program aborted because GET command failed

215 Program aborted because SET command failed

216 Error when trying to open/read/write a file

217 Error when trying to set uid/gid

218 SAVAPI Service timeout

219 SAVAPI Service not running

220 Failed to stop SAVAPI Service

223 Error when trying to execute report command

250 General daemon failure (specific information not available)

 Note Obsolete exit codes:

• 206: Invalid port specified

• 207: Invalid IP specified

• 212: No valid license found

Anti-malware SDK - Cross Platform (SAVAPI) 70



3 Anti-malware SDK (SAVAPI) Service

3.5 Logging

3.5.1 Initialization
The logging in the SAVAPI Service is initialized when the process starts and, depending on the facility
used, it can be divided in 3 types:

• Console logging – Cannot be configured or deactivated. It uses the STDOUT to report the results
of a given command (e.g. --version, --help) and the STDERR to print the error reason (if any).
For example: “Validation failed for option 'config' with value 'inexistent_path'. Path does not exist.”

• File logging – Fully configurable and disabled by default. It can be enabled through the command
line parameter:

--log-file=<log/file/path>

or by using the configuration file parameter:

LogFileName=<log/file/path>.

• System logging (syslog daemon on UNIX, Event Logger on Windows) – Partially configurable
and enabled by default. It can be enabled/disabled through the configuration file parameter
DisableSystemLogger=0/1.

3.5.2 Configuration
File logging

The file logging is fully configurable, using the following options:

• The log file location and name

It can be set with the command line option:

--log-file=<file/path>

or the configuration file option:

LogFileName=<file/path>

Because the file logging is disabled by default, the user also enables the logging by setting the location
of the file.

SAVAPI Service will try to open/create the file right after the privileges are dropped (i.e. the user&group
are changed) and will return an error if the opening fails. If the given file is already present on the
disk, SAVAPI Service will open it in appending mode, in order to write all messages at the end of
the file. Else, if the file does not exist, it will be created by SAVAPI Service with read&write and read
permissions for the configured user and configured group, respectively.

• The logging level

The default level of logging is 0 and it can be changed with the configuration file option
ReportLevel=<level>. Messages on different log levels can be distinguished by the level-specific
tag name (e.g. the level 0 has the ERROR tag assigned). The available log levels are the following:

- 0 – Only errors will be logged

This level includes messages sent when the execution of SAVAPI Service is aborted (i.e. fatal errors
during startup or running time). Additionally, SAVAPI Service uses this level in order to log the file-
scanning errors (e.g encrypted file, non-writable scan-temp folder). The associated tag is: ERROR.

- 1 – Only errors and alerts will be logged

Setting this level will determine SAVAPI Service to also log the malware found – when a file is detected
as infected, a message containing the file path and the malware details will be logged. The associated
tag is: ALERT.

- 2 – Errors, alerts and warnings

Anti-malware SDK - Cross Platform (SAVAPI) 71



3 Anti-malware SDK (SAVAPI) Service

This level adds the warning messages that do not affect the process condition (state). They are mainly
used to point the user to a possible issue or inconvenience: the used VDFs are old, the SAVAPI Library
is signed with developer key, etc. The associated tag is named: WARNING.

- 3 – Errors, alerts, warnings, info and debug

This is the most verbose level and adds the informational messages, used to broadly describe SAVAPI
Service's actions (command line and configuration file parsing, socket creation, socket message
interpretation, etc) and the debug messages – more detailed information about the performed actions.
Here are 2 tags: one for the info logs, named INFO, and the other for the debug messages, named
DEBUG.

 Note There are situations when SAVAPI Service is logging messages, regardless of the value of
the ReportLevel.

Currently, 2 messages are logged directly on WARNING level, in order to warn the user about an
accidental stop, performed by another instance:

- A running SAVAPI Service is stopped by another SAVAPI Service which starts: "WARNING: Another
running SAVAPI Service instance detected on the specified interface. The existing instance will be
replaced by the new one. SAVAPI Service will stop."

- The SAVAPI Service startup detects another running instance: “WARNING: Another running SAVAPI
Service instance detected on the specified interface. The existing instance will be replaced by the new
one.”

• The log template

Besides the message itself, SAVAPI Service can also add the time when the log is written in the file,
the host-machine where the process is running, the PID of the process, etc. This extra information is
possible due to the configuration file option LogTemplate=<user/log/template>, which contains
some predefined macros, automatically expanded by the SAVAPI Service's logger before writing the
message in the file. The default log template is:

“${DAY}/${MONTH}/${YEAR} ${HOUR}:${MINUTE}:${SECOND} ${HOST} ${PROGRAM}
[${PID}]: ${SOURCE}: ${LEVEL}: ${MSG}”

The available log macros are the following (macro X must be written as ${X} in order to be accepted):

- SOURCE – specifies the source of the message. Currently, there are 2 possible sources:
“Supervisor” (the message is sent by the SAVAPI service's supervisor) and “Service” (the message is
sent by the SAVAPI Service itself).

- LEVEL – will display the level of the message logged. The available levels are: “ERROR”, “ALERT”,
“WARNING”, “INFO” and “DEBUG”.

- YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, WEEKDAY, TZ(the time zone abbreviation: EEST,
CET , etc) and TZOFFSET (the time zone offset related to UTC/GMT: +0300 for Romania, +0200 for
Germany), – add the time-related information.

- HOST and FULLHOST– adds information about system's host name.

- PROGRAM – adds the name of the binary: “savapi” on UNIX and “savapi.exe” on Windows.

- PID – adds the process id.

- MSG – adds the message itself to the file.

- WINDATE and WINTIME – available only on Windows platforms; adds information about the local date
and local time.

• The log file size

By default, the size of the log file is unlimited and this may be an inconvenience when using a verbose
level (i.e. 3), because the file size can grow to a large size very quickly. Therefore, SAVAPI Service
offers the possibility to set the maximum size of the log file through the configuration parameters:
LogFileSize=<max-size> and LogRotate=<0|1>. By default, log rotation is disabled on UNIX
and enabled on Windows.

Anti-malware SDK - Cross Platform (SAVAPI) 72



3 Anti-malware SDK (SAVAPI) Service

If log rotation is activated (i.e. LogRotate=1), the log files will be rotated (i.e. file "log" is renamed to
"log.001", file “log.001” is renamed to “log.002” and so on) when the maximum size is reached. SAVAPI
Service keeps a maximum of 10 rotated files – from “log.001” to “log.010”.

If rotation is not active (LogRotate=0) SAVAPI Service will continue to write in the given file,
regardless of the configured size.

 Note Control characters (range [1..31] in the ASCII table) will be replaced by the # character in the
log files.

 System logging

SAVAPI Service sends the same messages to the system logger, as for the file logging.

The system logging uses the syslog daemon on UNIX and the Event Logger on Windows.

The following configuration options are available:

• Enabling/ Disabling

By default, the system logging is enabled on both platforms (UNIX and Windows). The user can
enable/ disable it, using the configuration file parameter:

DisableSystemLogger=0|1

• The level of logging

The logging levels (and default) for system logging are the same as for file logging and they can be
configured in the same way. Before sending the message to the system logger, SAVAPI Service maps
the log level with the corresponding level from the system logger:

- On UNIX (syslog daemon):

ERROR ? LOG_ERR, ALERT ? LOG_ALERT, WARNING ? LOG_WARNING, INFO ? LOG_INFO,
DEBUG ? LOG_DEBUG (check syslog's documentation for more information about its logging levels:
https://en.wikipedia.org/wiki/Syslog)

- On Windows (Event logger):

ERROR ? EVENTLOG_ERROR_TYPE, ALERT and WARNING ? EVENTLOG_WARNING_TYPE, INFO
and DEBUG ? EVENTLOG_INFORMATION_TYPE (see Event Logger’s documentation for more
information about its logging levels).

• The facility used (only for UNIX)

By default, the syslog facility used is “user”. This can be changed with the configuration file parameter
SyslogFacility=<facility>. The available syslog facilities are the following:

-"mail",

-"auth" (security/authorization messages),

- "authpriv" (security/ authorization messages – private),

-"cron" (clock daemon),

-"daemon" (system daemons),

-"ftp" (ftp daemon),

-"kern" (kernel messages),

-"lpr" (line printer subsystem),

-"news" (network news subsystem),

-"syslog" (messages generated internally by syslog daemon),

-"user" (random user-level messages),

-"uucp" (UUCP subsystem),

-"local0" to "local7" (reserved for local use).

Anti-malware SDK - Cross Platform (SAVAPI) 73

https://en.wikipedia.org/wiki/Syslog


3 Anti-malware SDK (SAVAPI) Service

 Recommendations

SAVAPI Service uses a synchronous logging mechanism, meaning that the thread (scanning instance)
execution is interrupted until the message is written in the configured facilities. The interruption time
depends on many factors: the file writing policy of the operating system (caching/ non-caching), the
disk I/O performance, the number of threads/ processes writing to the same file, etc.

Therefore, SAVAPI Service may have serious performance penalties due to the heavy logging; Verbose
log levels should be set only for debugging purposes.

The following logging configuration is recommended:

• Set a minimum log level: 0 or 1 (errors and alerts)

• Since SAVAPI Service also logs to the System Logger (which is a separate process meaning an
asynchronous logging, i.e. less dead-time), you should enable the file logging only if it is really
needed. The user can easily find the system logging messages.

 Issues with the Anti-malware SDK (SAVAPI) Protocol when using a telnet client

If the telnet client is used to communicate with the SAVAPI Service and UNICODE characters are sent,
it may happen that the connection fails. This is a telnet issue: On certain operating systems with telnet
clients, the UNICODE characters returned by SAVAPI cannot be displayed and the connection appears
to be hanging. When the socket traffic is verified with a debugging utility like strace, it can be clearly
seen that SAVAPI writes its answers correctly on the socket, but the telnet client does not write them
back to the user interface.

3.6 Non-disruptive service update
For critical applications, security has to be on the highest level without disturbing the operating
processes. Since malware threats became very dynamic and are constantly changing, the malware
signatures need to be updated frequently. The update process is a delicate operation that should by
no means disrupt or alter the application’s running services. For meeting these constraints, SAVAPI
duplicates some of its internal modules, like the engine or the malware signature files, from its
installation directory during its life span.

The process is described by the following picture.

In order to be backward compatible, SAVAPI needs to be started with the option DuplicateModules to
enable this feature. The location of the modules management directory can be specified via command
line or configuration file by using the --modules-dir switch or the ModulesDir configuration file
option. In order to let optimization measures take effect, it is recommended to have the modules and
the install directory on the same partition. After a non-disruptive service update, SAVAPI is signaled
to reload its newly updated modules on the fly without perturbing the application’s operations in any
way. The transition is a lengthily process. Busy workers’ are performing the switch as soon as their
jobs are finished, implying that multiple versions of the same module may be active at a time. The older
modules get purged from the specified modules’ location when no longer used.

 Note If you choose to supervise SAVAPI externally, you should start SAVAPI with both "-N" and "--
duplicate-modules", to avoid service interrupts after an update is performed.

3.7 Fops plug-in
SAVAPI Service users sometimes have to scan other objects than files, on disk, memory or other input
streams, in a similar way with SAVAPI Library. This is possible by using the Fops plug-in which is in fact
a library, loaded dynamically at runtime, containing the necessary functions for accessing those objects
as specified in chapter File Operation Structure (FOPS).

Anti-malware SDK - Cross Platform (SAVAPI) 74



4 Anti-malware SDK (SAVAPI) Client Library

The architecture of the system with the plug-in loaded is illustrated by the following graphic.

The parameters for loading and configuring the Fops plug-in (--fops-lib and -- fops-lib-
params) are described in details in Configuration. Once the service is started, all objects will be
scanned by the functions of the plug-in.

3.8 Cloud component
As opposed to other SAVAPI Service components, the Avira Protection Cloud (APC) technology
described in chapter 2.7 File reputation API support is offered as an online service. Most of the
computational effort takes place on Avira servers, decreasing the load on clients’ side. In order to use
APC scanning, a permanent network connection is required.

For more information about how to configure APC in SAVAPI Service, please consult 3.3.1 Command
line parameters and 3.3.2 Configuration file options.

3.9 OnAccess file scanning

 Note Currently, the OnAccess functionality is implemented only in the Library version of SAVAPI.

Please see chapter 2.8 Anti-malware SDK (SAVAPI) OnAccess.

4 Anti-malware SDK (SAVAPI) Client Library

4.1 General description of Anti-malware SDK (SAVAPI) Client Library
SAVAPI Client Library is a cross-platform library that allows the user to create network connections to
the SAVAPI Service, configure the service options and scan files (found on disk or mapped in memory)
or APC hashes.

 Note The structure used for scanning objects from memory uses the type: "unsigned int" for the
size of the object in memory. This limits the maximum size for a scanned object to approximately 4GB
(2^32) on most of the 64-bit systems.

 Note Even if it is enabled, APC will not be used when scanning objects from memory.

SAVAPI Client Library offers a cross-platform API, written in C language (the same as for the SAVAPI
Library). The API allows the SAVAPI integrator to initialize the library, create an instance, register
callback functions to monitor the processing progress, configure the instance settings, scan files,
destroy the instance and uninitialize the library.

Basically, it does all the tasks related to network connection management:

• Initialize the network socket

• Configure and start the network socket

• Verify that the network socket I/O operations were performed with success

Anti-malware SDK - Cross Platform (SAVAPI) 75



5 Installation

• Close the network socket and destroy all the related resources

You can implement the other parts of your application, without worrying about the network connections
management.

4.2 Integration of Anti-malware SDK (SAVAPI) Client Library
The client-designed applications should (implicitly or explicitly) link to the SAVAPI Client Library and
use the SAVAPI Client Library API to access the SAVAPI technology. The SAVAPI Client Library API
allows you to configure the scan engine and other SAVAPI options, to process files and to retrieve
information about the processing status.

In order to use the SAVAPI Client Library, the SAVAPI Service has to be installed and started.

A very simple example of how one can use the SAVAPI Library is offered in the SAVAPI SDK kit. (You
can refer to the SDK documentation under doc/README.)

4.3 Configuration of Anti-malware SDK (SAVAPI) Client Library
The SAVAPI Client Library can be configured through the exposed API. In order to set an option, you
call the SAVAPI_set() function, with the appropriate parameters.

The SAVAPI Client Library API is the same as the SAVAPI Library API. For more details, see the
documentation of SAVAPI Library API.

 Note The timeouts should be set according to the running system's load and performance. If the
system's resources are low, exceeding timeouts can break the communication between SAVAPI Client
Library and the SAVAPI Service. If the timeouts are infinite or too long, the client connection may block
while waiting for a server response.

4.4 Logging in Anti-malware SDK (SAVAPI) Client Library
The SAVAPI Client Library's logging mechanism is the same as the one in SAVAPI Library. See 2.4
Logging.

4.5 Extracting malware names
From the client library, you can only retrieve the path of the file containing the extracted malware
names, using the SAVAPI_get() function, with the option SAVAPI_OPTION_MALWARE_NAMES_FILE.

5 Installation

5.1 Installation on Windows
You must have a valid Avira license in order to install and use the product.

5.1.1 Installing the OnAccess driver

 Note Only needed for the SAVAPI Library. Currently, the SAVAPI Service does not offer the 
OnAccess functionality.

 Note Installing the OnAccess virtual driver is not mandatory for on-demand scanning.

 Note Dependencies for SAVAPI’s OnAccess scanning module can be found in chapter 2.8.1 
Dependencies.

Installing the OnAccess virtual driver means configuring the Windows operating system to load the 
OnAccess virtual driver during system startup.

Anti-malware SDK - Cross Platform (SAVAPI) 76



6 Licensing

 Note The OnAccess driver will not be loaded by the operating system when starting in safe mode.

In order to use SAVAPI's OnAccess file scanning module, the OnAccess virtual driver must be installed.
To install it, from an elevated command prompt, execute ams_setup.exe install. The installation
tool will copy the OnAccess virtual driver files to the Windows system driver directory and will configure
the operating system to load the drivers from there. Installing the OnAccess driver will make the kernel
immediately load it. The driver, as well as install/uninstall command-line scripts are available in the
SAVAPI package.

Without the drivers, OnAccess runtime libraries or a valid OnAccess-enabled license, SAVAPI will
disable the OnAccess module. SAVAPI on-demand file scanning will not be affected by the missing
SAVAPI OnAccess module components or by disabling the OnAccess module altogether.

The SAVAPI OnAccess runtime libraries, as defined in section 2.8.1 Dependencies, must be present in
the same location as the binary loading the SAVAPI library.

To uninstall, from an elevated command prompt, execute ams_setup.exe uninstall.

 Note Please note that the system must be restarted for the virtual driver to actually be unloaded
from the running kernel.

5.1.2 Installing the Anti-malware SDK (SAVAPI) Service
The product does not require further installation. The SAVAPI Service can be directly used from the
folder the SAVAPI package has been extracted to.

The SAVAPI Service must first be registered in the Windows Service Control Manager. This is done by
adding the command line option --install to the command line used with the service.

In order to start on a Windows operating system, the SAVAPI Service must retrieve at least the
interface it is supposed to start with, from the user. This can be done in two ways:

• Using the command line option --tcp.

For example: savapi --tcp=9999 --install

• Using the configuration file option ListenAddress and passing the configuration file to the service,
using the command line option --config.

For example: savapi --config=c:/path/to/my_config_file --install where the file
my_config_file should contain at least the following line: ListenAddress=inet:9999

For more details about the command line options and the configuration file options, please refer to the
following chapters:

• 3.3.1 Command line parameters

• 3.3.2 Configuration file options

5.2 Installation on UNIX
The product does not require installation. Just unpack the corresponding archive in a directory and you
can start using SAVAPI.

Please copy the license key into the SAVAPI installation directory. If the use of APC is intended, it is
mandatory to execute the apc_random_id_generator binary as an user with write rights on the
binary folder. A new file name apc_random_id will be created, needed by the APC licensing.

6 Licensing
Your company will receive one dedicated .key file, which can be delivered to all your customers
together with your own application’s key. Please note that you always have to deliver the .key file,
otherwise SAVAPI will not scan.

Anti-malware SDK - Cross Platform (SAVAPI) 77



7 Updating Anti-malware SDK (SAVAPI)

This key is unique for you as a company. It relates (among other things) to the expiration date and the
Product ID that you will receive from Avira (in the same time with the new key).

 Warning You are responsible for integrating, distributing or exchanging the key in your application,
which integrates SAVAPI (Library or Service). Your application must send the product ID to SAVAPI,
which uses it to initialize the engine. If the product ID and the key do not match, then the product does
not scan.

The key you will receive from Avira represents a license which is valid for an agreed amount of time. A
license can be renewed or blacklisted whenever necessary. Practically, it is up to you if your customers
will even see that they have two licenses. For them, the SAVAPI license key can be just another file
included in the package.

Of course, your product must make sure that the key does not expire, otherwise it will not scan
anymore.

When the key expires, the product will scan using its existing signatures. If you update the engine and
the expiration date in the key is older than the date in the engine, SAVAPI will not scan.

APC needs a unique random 40-characters string read from the apc_random_id file from the install
folder. The file must be generated once, during installation, using the apc_random_id_generator
utility and must be preserved for the entire installation lifespan. If, for various reasons, the
apc_random_id file cannot be accessed or its content is invalid, as fall-back a new random ID is
calculated based on the MAC address. If this operation fails also, SAVAPI will exit with an error.

If you use Avira Updater (avupdate.exe/.bin), you can enable the license verification with the --
check-product parameter. See 7. Updating Anti-malware SDK (SAVAPI).

7 Updating Anti-malware SDK (SAVAPI)
As a protection technology, SAVAPI needs regular updates, to keep its detection patterns up to
date and to fix possible issues. The SAVAPI product comes with an integrated updater module (the
Avira Updater), which can be used to update SAVAPI on all supported platforms, having the same
functionality on all supported operating systems.

Through command line parameters or configuration files for the Updater, the following operations can
be carried out:

• Check if new updates are available, for any of SAVAPI’s components (binary, library files, engine,
signatures).

• Update any of the SAVAPI components from Avira’s update servers or from user defined servers,
with the proper update structure.

• Mirror the already configured update servers.

The Updater mirrors the modular structure of SAVAPI, meaning that SAVAPI can be updated entirely or
by modules:

• Product update - Updating the binaries, libraries, engine and signatures depending on the SAVAPI
mode used in the implementation: Service or Library.

• Engine update - Updating the detection files ( ae*.* and xbv* .vdf ).

For each SAVAPI update mode (product, engine) a set of modules is selected and sent to the Updater
as parameters, either in command line or in a configuration file. The platform package already includes
configuration files for the main update scenarios. (see table on next page, please). The table below
presents the correspondence between SAVAPI runmodes and updating configuration files.

Configuration file SAVAPI runmode Updated modules

avupdate-savapi-engine.conf daemon/ service engine, signatures

avupdate-savapi-product.conf daemon/ service all modules

avupdate-savapilib-engine.conf library engine, signatures

Anti-malware SDK - Cross Platform (SAVAPI) 78



7 Updating Anti-malware SDK (SAVAPI)

Configuration file SAVAPI runmode Updated modules

avupdate-savapilib-product.conf library all modules

The binary name of the Updater is avupdate.bin (UNIX) and avupdate.exe (Windows).

The Updater’s help message can be obtained with the command:

<binary_name> --help

The Updater can be called with a certain configuration, using the following command line:

<binary_name> -C <avupdate-savapi....conf>

At the end of each update cycle, the status of the update will be displayed in the console. If you need to
see the progress status, use the --show-progress option when calling the updater binary.

The messages (error, warning, etc.) displayed by the Updater when executed are set in the binary file
avupdate_msg.avr. This file has to exist in the same folder as the avupdate binary file,being mandatory
for starting the updater binary.

7.1 Mirroring the Updater’s server structure
The updater utility offers the capability to create local mirrors of the existing updater server structure.
Mirroring a server will create a fully functional structure that can be used to update the product from.
During this operation, the updater copies all needed files from the server, based on the provided
configuration parameters of the file.

Example for Windows:

avupdate.exe --mirror --config=<config file> --install-dir=<path>

Example for UNIX:

./avupdate --mirror --config=<config file> --install-dir=<path>

When using the --mirror option, specifying the --config and --install-dir parameters is
mandatory.

The <path> provided as --install-dir value is the destination of the mirroring process. The
directory has to exist and it has to grant writing privileges to the user running the mirroring process.

7.2 Anti-malware SDK (SAVAPI) update structure and modules

7.2.1 Updater related files
The following table contains a minimal description about the Updater related files from the SAVAPI
package.

Name Description

avupdate.bin (UNIX) avupdate.exe (Windows) The Updater binary itself, performs all actions needed for an
update.

avupdate_msg.avr The Updater resource file in binary format, that contains the
compiled message used for logging. It is used and needed by
the Updater binary.

avupdate-savapi-product.conf avupdate-savapi-engine.conf The SAVAPI Server update configuration files for product (all
modules) and engine (AVE2 and VDF modules).

avupdate-savapilib-product.conf avupdate-savapilib-
engine.conf

The SAVAPI Library update configuration files for product (all
modules) and engine (AVE2 and VDF modules).

update.sh (UNIX) update.bat (Windows) The script file containing the basic Updater commands needed
to perform updates for SAVAPI Server and Library.

savapi_stub (UNIX) savapi_stub.exe (Windows) The executable file used during the update process in order to
execute the PRETEST, POST actions. It will be referenced as
the STUB executable.

savapi_pretest.sh (UNIX) savapi_pretest.bat (Windows) The script file used during the update process in order
to execute the PRETEST action. It will be referenced as
PRETEST script.

Anti-malware SDK - Cross Platform (SAVAPI) 79



7 Updating Anti-malware SDK (SAVAPI)

Name Description

savapi_pre.sh (UNIX) savapi_pre.bat (Windows) The script file used during the update process in order to
execute the PRE action. It will be referenced as the PRE
script.

savapi_post.sh (UNIX) savapi_post.bat (Windows) The script file used during the update process in order to
execute the POST action. It will be referenced as the POST
script.

7.2.2 Introduction to Anti-malware SDK (SAVAPI) update
The Updater binary can be used to check, download and/or mirror the updates of SAVAPI’s
components (Server, Library, Client Library, engine, VDF).

In order to check if there are updates available for a specific SAVAPI update configuration the option
"check-if-update-available", along with the "skip-master-file" option, should be specified
in the command line: </path/to/Updater/binary> --config=<path/to/SAVAPI/update/
config/ file> --check-if-update-available --skip-master-file

In order to perform the actual update for a specific SAVAPI update configuration the following command
line may be used ("show-progress" option can be appended in order to retrieve real-time download
progress): </path/to/Updater/binary> --config=<path/to/SAVAPI/update/config/
file>

To mirror the entire update structure of a specific SAVAPI update configuration the "mirror" option
should be used in the command line: </path/to/Updater/binary> --config=<path/to/
SAVAPI/update/config/ file> --mirror --install-dir=<path>

7.2.3 Modules of the Anti-malware SDK (SAVAPI) update
The update of SAVAPI can be done for all its components (i.e. the whole product update, which can be
done using the avupdate-savapi-product.conf configuration) or only for specific modules by using the
"update-modules-list" option (e.g. the avupdatesavapi- engine.conf configuration updates only
the engine binaries and the virus definition files).

The most important modules of SAVAPI are the following:

• SELFUPDATE: Contains the Updater binary’s files (the binary itself and the resource file). This
module is updated first in order to be able to re-trigger the whole update process if there are new
Updater files. The SELFUPDATE module can be skipped by using the option "skip-selfupdate".

• SAVAPI: Contains the SAVAPI binary and SAVAPI Library files. If a file from this module is updated,
the running SAVAPI processes need to be restarted.

• VDF: Contains the virus definition files. If a file from this module is updated, the running SAVAPI
processes need to be reloaded. If SAVAPI is started with duplicate-modules option enabled, the
update can take place without stopping. For more information on this scenario, see SAVAPI option
"--reload-engine".

• AVE2: Contains the engine binary files. If a file from this module is updated, the running SAVAPI
processes need to be reloaded. If SAVAPI is started with duplicate-modules option enabled, the
update can take place without stopping. For more information on this scenario, see SAVAPI option
"--reload-engine".

7.2.4 Anti-malware SDK (SAVAPI) update script details
During the update process of SAVAPI components, various scripts are used in order to perform specific
actions, in the following sequence: test if SAVAPI can start with the new files (PRETEST), detect the
running SAVAPI processes (PRE), reload/restart the running SAVAPI processes (POST).

The scripts are triggered by the Updater binary through a proxy executable, savapi_stub[.exe], which is
called for every update action: PRETEST, PRE and POST.

Then, depending on the action, the STUB will choose a specific script that will actually run the given
action:

Anti-malware SDK - Cross Platform (SAVAPI) 80



7 Updating Anti-malware SDK (SAVAPI)

• <path/to/pretest/install/dir>/savapi_pretest.[sh|bat] <path/to/pretest/
install/dir> called for the PRETEST action in order to test if the new files can be used by
SAVAPI.

The script is copied from the installation directory (see the "install-dir" option of Updater binary)
to the PRETEST directory and it is run from the new location with one single argument - path to the
PRETEST directory. The script is triggered for the files belonging to the modules: SAVAPI, VDF and
AVE2.

• <path/to/install/dir>/savapi_pre.[sh|bat] [<parent/process/ identifier>]
<path/to/install/dir> <post_action> called for the PRE action and it is used to inform the
POST script about the action (reload or restart) to be applied to the running SAVAPI processes.

The script is run from the installation directory and contains as arguments the process identifier of the
Updater binary (only on UNIX), the path to the installation directory and the post-action (i.e. one of
"reload" or "restart" string). The script is triggered for the files belonging to the modules: SAVAPI -
with "restart" action, VDF, AVE2 - with "reload" action.

• <path/to/install/dir>/savapi_post.[sh|bat] [<parent/process/ identifier>]
<path/to/install/dir> called for the POST action in order to restart or reload the running
SAVAPI processes.

The script will automatically detect all SAVAPI processes which are started from the provided
installation directory and it will reload/restart as a SAVAPI daemon using the command line parameters
that they were started with.The script is run from the installation directory and contains as arguments
the process identifier of the Updater binary (only under UNIX) and the path to the installation directory.
The script is triggered for the files belonging to the modules: SAVAPI, VDF or AVE2.

The STUB executable is overwritten each time an update operation is performed, residing in the
update-server structure.

7.2.5 How to use Anti-malware SDK (SAVAPI) update scripts
By default, the SAVAPI update scripts requires that all modules (SAVAPI binary, SAVAPI Library,
engine binaries and virus definition files) are placed in the installation directory. In some exotic cases
configuration requires (e.g. when the engine binaries and virus definition files are placed in a distinct
directory, other than the SAVAPI binary and SAVAPI Library) - changes need to be performed to the
PRETEST, PRE and POST scripts accordingly.

 Note All the described scripts can be changed by the user with exception of the STUB executable
which is located in SAVAPI's server side update structure, meaning that it will be overwritten every time
when the online version does not correspond with the local one.

To demonstrate, how the SAVAPI update scripts can be used to meet various setup scenarios, one
can consider the case when the Updater binary, SAVAPI binary and SAVAPI Library files (i.e. the files
from the SELFUPDATE and SAVAPI modules) are placed in a directory called DIR_SAVAPI and the
engine binary and the virus definition files (i.e. the files from the AVE2 and VDF modules) are located in
a distinct directory called DIR_ENGINE. In order to update the engine files (AVE2 and VDF modules),
the following must be done:

- copy (direct copy or hard link) the PRETEST, PRE and POST scripts in the DIR_ENGINE directory.

- modify the copied PRETEST and the POST scripts in order to set the right path (i.e. the path to
DIR_SAVAPI) to SAVAPI files. For simplicity, modify the value of the SAVAPI_DIR_PATH variable with
DIR_SAVAPI.

- run the Updater binary by setting the installation directory to the DIR_ENGINE and by adding the
update-modules-list=AVE2, VDF parameter.

In the described scenario, to update the SAVAPI files (SAVAPI module), the following must be done:

- copy (direct copy or hard link) the PRETEST, PRE and POST scripts in the DIR_SAVAPI directory.

- modify the copied PRETEST script in order to set the right path (i.e. the path to DIR_ENGINE) to
engine files. For simplicity, modify the value of the ENGINE_DIR_PATH variable with DIR_ENGINE.

Anti-malware SDK - Cross Platform (SAVAPI) 81



7 Updating Anti-malware SDK (SAVAPI)

- run the Updater binary by setting the installation directory to the DIR_SAVAPI and by adding the
update-modules-list=SAVAPI parameter.

In general, in order to be able to update SAVAPI components that are spread over multiple directories
when SAVAPI is started with DIR_ENGINE directory, the SAVAPI update scripts (without the STUB
executable) should be placed in the directory used for installation of those specific module files (i.e. the
install-dir option of Updater binary) and they should be modified in order to point at valid paths
used in the performed actions (PRETEST, PRE and POST).

7.2.6 Limitations
The files from the AVE2 and VDF modules must be located in the same directory.

7.3 Avira Updater’s configuration parameters
Before downloading and updating product files, Avira Updater reads the configuration from
avupdate.conf from its default location, or from any other configuration file specified when calling the
binary.

 Note The commands in command line have a higher priority and override the options in the
configuration file.

The Updater supports transfer protocols like: HTTP, HTTPS (with or without proxies) and SMB.

With a few exceptions, the configuration parameters listed in this section can be used both in command
line and in configuration files. (In configuration files, the parameters are called without the preceding
dashes "--".)

Example of parameter in avupdate.conf: temp-dir=/tmp

Example of parameter in command line: avupdate --temp-dir=/tmp

The general syntax for configuring the Updater in command line is:

./avupdate.bin [options] – for UNIX

avupdate.exe [options] – for Windows

The parameter names are cross-platform and not case-sensitive. The parameter values have to be
compliant with the running platform specifications.

7.3.1 General parameters
• --help

Displays the help message, about the Updater options.

 Note This option is available only in command line.

• --version

Displays Updater's version.

 Note This option is available only in command line.

• --config

Contains the path to the configuration file. Example:

avupdate.bin --config=avupdate.conf

 Note This option is available only in command line.

The default value: avupdate.conf

• --no-config

Anti-malware SDK - Cross Platform (SAVAPI) 82



7 Updating Anti-malware SDK (SAVAPI)

The Updater will not read any configuration file. All parameters are given in command line.

 Note This option is available only in command line.

• --quiet

The Updater will not log messages on screen.

 Note This option is available only in command line.

The default value: false

• --show-progress

Shows the download progress.

The default value: false

 Directories and files

• --temp-dir

Temporary directory for downloading update files. Example:

avupdate.bin --temp-dir=./tmp

The default value: <install directory>/avupdate_tmp_XXXXXX

• --backup-dir

Backup directory for the existing files, before updating.

The default value: <install directory>/avupdate_backup

• --install-dir

Specifies the installation directory for updated product files.

avupdate.bin -- install-dir=./

• --update-dir

Specifies the location of engine, vdf and build.dat in order to get the needed information for the
user-agent string. If this parameter is not given, the Updater will use the path from the --install-
dir option.

• --cache-dir

Specifies the cache directory for internal usage.

The default value: <install directory>/idx

• --key-dir

Specifies the directory in which the Updater should search for a valid key.

• --master-file

Specifies the master.idx file. Example:

avupdate.bin --master-file=/idx/master.idx

• --local-master-file

Specifies the full path to a local master file to be used instead of the one from the installation
directory.

• --product-file

To specify the product file. Example:

Anti-malware SDK - Cross Platform (SAVAPI) 83



7 Updating Anti-malware SDK (SAVAPI)

avupdate.bin --product-file=/idx/savapi4-win64-en.info.gz

The product-file parameter can be used both in command line and in config files. It defines the
platform where SAVAPI is running. Using this information, the Updater determines which files to
check for updates and to download, if necessary.

The currently possible values for this parameter are:

- [savapi4|savapi4lib]-linux32-en.info.gz

- [savapi4|savapi4lib]-linux_arm64-en.info.gz

- [savapi4|savapi4lib]-win32-en.info.gz

- [savapi4|savapi4lib]-win64-en.info.gz

This list of values may change, when new supported platforms are added.

• --add-var-pair

Used to define pairs of variables and values in the INFO file. Example:

DESTINATION=%MY_INSTALL_DIR%

In command line:

avupdate.bin --add-var-pair=MY_INSTALL_DIR=/usr/lib/<yourproduct>

• --module-install-path

Indicates a specific installation path for a module.

The default value: The path from the install-dir option. Example:

./avupdate.bin --update-modules-list=MODULE1,MODULE2

--module-install-path="MODULE1=<install_directory>/MODULE1_DIR"

--module-install-path="MODULE2=<install_directory>/MODULE2_DIR"

• --cert-path

The path to one or multiple certificate files to be used for authenticating the https update servers
which are specified by either the internet-srvs or the peak-handling-srvs options. The
certificates must be in PEM format.

This option depends on the value of --cert-verify-policy:

- If --cert-verify-policy is auto or ca-pinning, --cert-path will contain a list of CA bundle
paths, separated by ';'

./avupdate.bin --cert-path="valid_ca_bundle_A.crt" --cert-verify-
policy="auto"

./avupdate.bin --cert-path="valid_ca_bundle_A.crt;valid_ca_bundle_B.crt" --
cert-verify-policy="ca-pinning"

- If --cert-verify-policy is pubkey-pinning, --cert-path will contain a list of certificate
paths or SHA256 hashes in base64 of the certificates' public keys separated by ';'

`./avupdate.bin --cert-path="valid_certificate_A.crt" --cert-verify-policy="pubkey-pinning"`

`./avupdate.bin --cert-path="valid_certificate_A.crt;valid_certificate_B.crt" --cert-verify-
policy="pubkey-pinning"`

`./avupdate.bin --cert-path="sha256//63quvhJLXsIUY0+rfroZ7vw2RrFYE6Sr
+zchZGxbzU4=;valid_certificate_B.crt"--cert-verify-policy="pubkey-pinning"`

The default value: `none` (which means that https update servers are not authenticated by default)

• --crl-path

Anti-malware SDK - Cross Platform (SAVAPI) 84



7 Updating Anti-malware SDK (SAVAPI)

The path to a Certificate Revocation List file to be used for certificate validation when authenticating
the https update servers which are specified by either the internet-srvs or the peak-
handling-srvs options.

The default value: none

 Note This option is only considered if the cert-path option is also specified.

--cert-verify-policy

The policy by which the server certificate is verified. It can have the following values:

- auto: system-wide certificate store + certificate bundles specified in --cert-path

- ca-pinning: certificate bundles only, specified in --cert-path

- pubkey-pinning: certificate paths or the SHA256 hashes in base64 of the certificates' public keys,
specified in --cert-path

The default value: auto

 Note This option is ignored when --cert-path is not specified.

Steps to obtain the SHA256 of Avira public key:

1. Download the certificate from the Avira servers.

echo -n | openssl s_client -connect oem.avira-update.com:443 | sed -ne
'/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > oem.avira-update.com.pem

2. Extract the public key from the certificate.

openssl x509 -in oem.avira-update.com.pem -pubkey -noout > oem.avira-
update.com.pem.pubkey

3. Convert the public key to DER format.

openssl asn1parse -noout -inform pem -in oem.aviraupdate. com.pem.pubkey
-out oem.avira-update.com.pem.pubkey.de

4. Hash the key with SHA256 algorithm and convert the result to base64.

openssl dgst -sha256 -binary oem.avira-update.com.pem.pubkey.der |
openssl base64 63quvhJLXsIUY0+rfroZ7vw2RrFYE6Sr+zchZGxbzU4=

• --no-host-check

Specifies that the host names of https update servers should not be verified against the servers'
certificate names.

The default value: false (the host names are checked)

• --no-cert-verify

Disables the https certificate validation.

This option disables the verification for the https update server certificate expiration date and also
the checks for the server's authenticity (in case --cert-path and --cert-verify-policy options are used).

The default value: false (the update server certificate is validated)

• --internet-srvs

The list of Internet update servers.

./avupdate.bin --internet-srvs=https://oem.avira-update.com/update

An ftp or an http server can also be used for updates. For example:

./avupdate.bin --internet-srvs=ftp://server

or

./avupdate.bin --internet-srvs=http://server

Anti-malware SDK - Cross Platform (SAVAPI) 85



7 Updating Anti-malware SDK (SAVAPI)

• --peak-handling-srvs

Contains the servers used (ftp, http or https) in case no Internet server is available or if both --
ipv4-peak-server-limit and --ipv6-peak-server-limit are reached (see below).

• --ipv4-peak-server-limit

If both --ipv4-peak-server-limit and --ipv6-peak-server-limit are reached, the list of
servers from --peak-handling-srvs will be used for updates.

If this limit is set to 0, the Updater will try to update from all IPv4 servers (--internetsrvs) before
trying to update from the --peak-handling-srvs list.

The default value: 0

• --ipv6-peak-server-limit

If both --ipv4-peak-server-limit and --ipv6-peak-server-limit are reached, the list of
servers from --peak-handling-srvs will be used for updates.

If this limit is set to 0, the Updater will try to update from all IPv6 servers (--internetsrvs) before
trying to update from the --peak-handling-srvs list.

The default value: 0

• --internet-protocol

The Internet protocol version. It can have three values: auto, ipv4, ipv6. Example:

avupdate.bin --internet-protocol=ipv6

The default value: auto

7.3.2 Update mode
• --mirror

Performs a mirror update (meaning no pre / post / unpost applications are executed).

See 7.1 Mirroring the Updater’s server structure. This parameter is not shown in the --help output.

The default value: false

• --check-if-update-available

If this option is set, the Updater will not install any files. It will only check if an update is available.

There are two situations:

- If --skip-master-file is set, the Updater will download the product.info files and it will check all
local files against the online ones. It will also log the files that are dirty and must be updated.

- If --skip-master-file is not set, the Updater will download only the master.idx. It will check only
the local master.idx against the online one. If identical, it will return Nothing to update. If not identical, it
will return Update is available.

The default value: false

• --update-modules-list

Specifies the modules that must be updated (comma-separated list).

For both SAVAPI runmodes, the following values can be assigned to this parameter, depending on
what needs to be updated:

SAVAPI daemon/service runmode:

- SAVAPI - includes SAVAPI’s binary files in the update process (Savapi and libsavapi.so on UNIX
systems; or savapi.exe, savapi.dll on Windows systems);

- SAVAPI_COMMON - special module that enables pre and post update actions;

- AVE2 - includes the detection engine files in the update process;

Anti-malware SDK - Cross Platform (SAVAPI) 86



7 Updating Anti-malware SDK (SAVAPI)

- VDF - includes the virus definition files in the update process;

- SELFUPDATE - includes the files related to the Updater in the update process (avupdate_msg.avr and
avupdate.bin on UNIX systems; or avupdate_msg.avr and avupdate.exe on Windows systems)

SAVAPI Lib runmode:

- SAVAPI - includes SAVAPI’s libraries in the update process (libsavapi.so on UNIX systems; or
savapi.dll on Windows systems);

- AVE2 - includes the detection engine files in the update process;

- VDF - includes the virus definition files in the update process;

- SELFUPDATE - includes the files related to the Updater in the update process ( avupdate_msg.avr
and avupdate.bin on UNIX systems; or avupdate_msg.avr and avupdate.exe on Windows systems)

• --skip-master-file

Skip master file (Use this option if you want to mirror the entire structure, not only the changed files).

The default value: false

• --skip-selfupdate

Skip installing Updater files.

The default value: false

• --no-deltaupdate

Specifies that the Updater will not use the delta update feature.

The default value: false

• --no-version-check

Specifies that the Updater will not check the files version in mirror mode. In this case it will only check
the md5.

The default value: false

• --no-signature-check

Specifies that the Updater will not check if the files are signed.

 Note Only uncompressed binary files are checked.

The default value: true

• --signature-info-ssl-check

Check if the info files are signed with the OpenSSL signature (option valid only on Linux and macOS
platforms).

Default value: false

• --ext-program-timeout

Timeout for waiting for an executed pre / post / unpost application (in seconds).

The default value: 1800 s

• --depend

If in the product.info file, module 1 depends on module 2, then "update-modules-list=module 1"
will update both modules 1 and 2.

The default value: false (meaning the Updater will use the new "depend" functionality)

• --ignore-srvs-list

Anti-malware SDK - Cross Platform (SAVAPI) 87



7 Updating Anti-malware SDK (SAVAPI)

For updates from a share or internal http server, the Updater must ignore the servers list present in the
IDX file and download everything from the local network and not from the Internet.

The default value: false

7.3.3 Connection settings
• --user-agent

Specifies the user agent string, which is reported to the http server.

The default value:

@AUVI@1.0;<product_name>-UpdateCP/<updater version> (<license
types>;<products>; <language>; AVE <engine version>; VDF <VDF version>;
<operating system name>; <operating system details>; <country>; <serial>;
<license serials>; <operating system language>; )

By default, the <product_name> is AntiVir. If the --product-name-file option is specified or if the
default productname.dat file exists, <product name> is replaced with the content of the respective
file.

Examples:

- If the --product-name-file option is not specified:

@AUVI@1.0;AntiVir-UpdateCP/2.0.3.6 (SAVXE; SAVAPILINUX_ GLIBC24_X86_64-
EN; EN; AVE 8.2.10.52; VDF 7.11.28.140; LINUX X86_64 2.6.38-13-
GENERIC; DISTRO RELEASE SQUEEZE/SID GLIBC 2.13; EN_US.UTF-8;
A182365FA39EE0327E3A4918B0358475; 2100133080-ASRTE- 0000001; EN_US.UTF-8; )

- If the default productname.dat file applies:

@AUVI@1.0;SAVAPI4.0.0.1-UpdateCP/2.0.3.6 (SAVXE; SAVAPILINUX_
GLIBC24_X86_64-EN; EN; AVE 8.2.10.52; VDF 7.11.28.140; LINUX X86_64
2.6.38-13-GENERIC; DISTRO RELEASE SQUEEZE/SID GLIBC 2.13; EN_US.UTF-8;
A182365FA39EE0327E3A4918B0358475; 2100133080-ASRTE- 0000001; EN_US.UTF-8; )

• --product-name-file

Specifies the file in which the product name is stored (for example SAVAPI4.0). The file path is
relative to the update binary location. The product name is added to the <product_name> field in
the --user-agent string.

The file must be readable and it must contain the product name, as ASCII printable string, without
whitespaces and with a maximum length of 64 characters. Otherwise, an error message is
displayed and the update process stops.

If no product-name-file is specified and if the default productname.dat file does not exist, no
changes are made to the user-agent string.

The default value: productname.dat containing the following text format: SAVAPI<VERSION>; where
Version represents the major and minor versions (e.g. 4.0).

Example:

avupdate.bin --product-name-file=my_product_name.dat

• --system-proxy

Tells the Updater to use the system proxy settings.

The default value: false

• --proxy-username

User name for the proxy authentication.

• --proxy-password

Password for the proxy authentication.

Anti-malware SDK - Cross Platform (SAVAPI) 88



7 Updating Anti-malware SDK (SAVAPI)

• --proxy-host

The name of the proxy server.

• --proxy-port

Proxy port.

• --username

User name for accessing a shared folder, an ftp server or an http server.

• --password

The password for accessing a shared folder, an ftp server or an http server.

• --update-auth-type

Authentication type that will be used for updates. It can be one of the following:

- basic

- digest

- ntlm

- any

If 'any' is chosen, the Updater will first query the site to see which authentication methods it
supports and then it will pick one of them.

The default value: any

• --connect-timeout

The maximum time in seconds that the connection to the server is allowed to take.

This is only used to limit the connection phase.

The default value: 30 seconds

• --receive-timeout

The timeout (in seconds) for receiving a response after a request to an update server.

The default value: 30 seconds

• --retries

Number of retries.

The default value: 0

 Note The retry mechanism is only applied to the download errors. In case of connect errors, the
'retries' number is 0 and cannot be changed.

• --retry-timeout

Timeout between retries (in seconds).

The default value: 0 seconds

• --force-update

Bring all modules to the same state as they are on the update server.

The default value: false

• --xvdf-always-merge

Merge xvdf files even if no files were updated.

The default value: false

Anti-malware SDK - Cross Platform (SAVAPI) 89



7 Updating Anti-malware SDK (SAVAPI)

• --no-dns-resolve

Do not perform DNS resolving for the update servers.

The default value: false

 Note This option is implicitly enabled for https connections, except in the case when --no-host-
check is also used.

7.3.4 Notification emails
• --mailer

Specifies the method for sending emails. Available values:

- smtp - for using your own smtp engine

- sendmail - for using the sendmail binary

The default value: smtp

• --sendmail-path

When --mailer is set to sendmail, this parameter specifies the local path of the sendmail binary.

 Note The path must be a valid and secured sendmail executable to avoid potential security risks
of executing arbitrary commands.

On UNIX, the default value is: /usr/sbin/sendmail

It also searches in /usr/lib/sendmail

• --sendmail-arguments

If --mailer is set to sendmail, this parameter specifies the arguments for running the sendmail binary.

On UNIX, the default value is: -oem -oi

• --email-to

The recipient of the notification emails, if --notify-when is not 0 (see below).

The default value: root@localhost

• --email-from

The sender of the notification emails, if --notify-when is not 0 (see below).

The default value: root@localhost

• --notify-when

Sends email notifications to the address set with --email-to. Available values:

- 0 - no email notifications are sent (default value)

- 1 - email notifications are sent in case of "successful update", "unsuccessful update" or "up to date"

- 2 - email notification only in case of "unsuccessful update"

- 3 - email notification only in case of "successful update"

The default value: 0

• --email-footer

Changes the footer of the notification email.

The default footer of the notification emails is:

-- © 2016 Avira Operations GmbH & Co. KG. All rights reserved.

Anti-malware SDK - Cross Platform (SAVAPI) 90



7 Updating Anti-malware SDK (SAVAPI)

Syntax:

avupdate.bin --email-to=<yourmail@domain.com> --email-footer=<custom footer>

• --auth-method

When set in avupdate.conf, the Updater requires the smtp login data, smtp-user and smtp-
password (see bellow), in order to send email notifications to the address set with --email-to.

The default value: false

• --smtp-user

If notify-when is not 0 and auth-method is set in avupdate.conf, the Updater requires the smtp
login data: smtp-user and smtp-password.

• --smtp-password

If notify-when is not 0 and auth-method is set in avupdate.conf, the Updater requires the smtp
login data: smtp-user and smtp-password.

• --smtp-server

The smtp server for sending email notifications, if --notify-when is not 0.

• --smtp-port

The smtp port for sending email notifications, if --notify-when is not 0.

The default value: 25

• --smtp-timeout

Timeout for receiving data when connecting to an smtp server (in seconds).

The default value: 30 seconds

7.4 Avira Updater’s logging
The default behavior of the Updater is to create a log file for each attempted update. The log file is
created in the directory from which the Updater is called.

The Updater offers logging functionalities that can be configured by using the following parameters:

• --log

Specifies a different name of the log file.

The default name: avupdate.log

If this option is not present, a default log file with the name avupdate.log will be created in the same
directory as the Updater binary.

• --log-rotate

Overwrites the log files by rotation, meaning that, for each updater execution a new log file will be
created. For maintaining a log history, up to 10 recent log files will be kept. For example:

avupdate.log.001, avupdate.log.002, avupdate.log.003, ..., avupdate.log.009

The default value: false

 Note This parameter is automatically disabled if --skip-selfupdate is enabled.

 Note This parameter is mutually exclusive with --log-append (see below). If both parameters
are present, the --log-append behavior will be ignored.

• --log-append

Anti-malware SDK - Cross Platform (SAVAPI) 91



7 Updating Anti-malware SDK (SAVAPI)

Appends to log file instead of creating new files. When there is no more space in the log file available
(when log-file-size is set to a value different than 0, which means infinite), the rotation is
automatically enabled, so new files are created like in log-rotate.

The default value: false (the log is overwritten).

 Note This parameter is mutually exclusive with --log-rotate. If both parameters are present,
the --log-append behavior will be ignored.

• --log-file-size

Sets the log file maximum allowed size in bytes (0 = unlimited). If the size is exceeded, the log rotation
is automatically enabled and a new log file is created.

The default value: 0 (unlimited)

• --log-template

Option to specify the format of the log file.

The default template used for logging is:

${DAY}/${MONTH}/${YEAR} ${HOUR}:${MINUTE}:${SECOND} ${FULLHOST}[${PID}]:
${SOURCE}: ${LEVEL}: ${MSG}

where:

- ${DAY}/${MONTH}/${YEAR} - date format

- ${HOUR}, ${MINUTE}, ${SECOND} - time format

- ${FULLHOST} - host name

- ${PID} - pid of the program generating the log

- ${LEVEL} - the message level, as set by the program ( DEBUG, INFO, MESSAGE, WARNING,
ERROR, FATAL, MAX_LEVEL, UNDEFINED )

- ${MSG} - the message sent to the log

Example of log entry:

16/07/2016 12:34:04 abc-desktop : UPD: ERROR: Smtp engine returned error: Connection refused

The user can specify the desired information to be logged.

For example:

- in avupdate.conf:

log-template=${MSG}

- in the command line:

avupdate.bin --log-template=${MSG}

 Note All the described scripts can be changed by the user with exception of the STUB executable
which is located in SAVAPI's server side update structure, meaning that it will be overwritten every time
when the on-line version does not correspond with the local one.

7.5 Avira Updater's return codes
The Updater's main return codes are:

• 0 - successful update

• 1 - nothing to update

• -1 - unsuccessful update

Anti-malware SDK - Cross Platform (SAVAPI) 92



8 Contact information

7.6 xVDF files merging
After a successful update, in order to improve the performance, the xVDF files need to be merged
into one or more larger files named localXXX.vdf. (ex: local000.vdf). This is done automatically by the
Updater binary, but if one chooses to update SAVAPI by other methods, the xVDF merge library must
be used after the custom updater finishes.

7.6.1 Merging the xVDF files using the xvdfmerge library
Two files were added to the SAVAPI package for merging the xVDF files. These files are located in:

- bin folder: libxvdfmerge.so for Unix or xvdfmerge.dll for Windows;

- include folder: xvdfmerge.h.

Also an example was added, located in the advanced/xvdfmerge_example folder.

The library merges the xVDF files by using the following function:

 XVDF_files_merge(const TCHAR* engine_dir, const TCHAR* xvdfs_dir);

Simple example for using this function:

XVDF_MERGE_STATUS xvdf_ret = xvdf_files_merge("/home/savapi/bin", "/home/savapi/bin");

If the merge was successful, the function will return the value XVDF_MERGE_S_OK.

7.6.2 Updating the xVDF merge library
In order to maintain the functionality and to fix possible issues, xVDF merge library needs updates. The
library can be updated with an integrated updater module (the Avira Updater) which is available on all
xVDF merge supported platforms.

Through command line parameters or configuration file avupdate-xvdfmerge-product.conf for the
Updater, the following operations can be carried out:

- Check if new updates are available;

- Update xVDF merge library from Avira's update servers or from user-defined servers, with the proper
update structure;

- mirror the already configured update servers see

The binary name of the Updater is avupdate.bin (UNIX) and avupdate.exe (Windows).

The xVDF merge library update command:

<Updater_binary_name> -C avupdate-xvdfmerge-product.conf

At the end of each update cycle, the status of the update will be displayed in the console. The
messages (error, warning, etc.) displayed by the Updater when executed are set in the binary
file avupdate_msg.avr. This file has to exist in the same folder as the avupdate binary file, being
mandatory for starting the Updater binary.

The xVDF merge library module update name is XVDF_MERGE. This can be used to specify modules
by adding the "update-modules-list" option in command line. For more information about
configuration parameters, see .

8 Contact information

8.1 Support services
During evaluation, integration, and live use

If you are evaluating or starting to integrate Avira's technology into your solution, or if your integration
is finalized and you are going to release your solution to your customers, the Integration Support
engineers will answer your technical questions — from planning the architecture of the integration, to
detailed code-related routines and live use.

Anti-malware SDK - Cross Platform (SAVAPI) 93



9 Appendix

To contact the OEM support team for technical issues, mailto:oemspport@avira.com

Partner Portal

For our OEM customers we also provide a login to our Partner Portal which includes all the latest news
and information about Avira's technology, SDK downloads, and documentation: OEM Partner Portal

8.2 Contact
Avira Operations GmbH Kaplaneiweg 1 D-88069 Tettnang Germany

You can find further information about us and our products on the Avira OEM website.

9 Appendix

9.1 Anti-malware SDK (SAVAPI) binaries
Windows

Assuming SAVAPI is installed in a folder, it will contain the following files:

Description File name on disk Installation Redistributable

SAVAPI binary savapi.exe Mandatory YES

SAVAPI library and its
dependencies

savapi.dll savapiclient.dll Mandatory YES

Engine binaries ae*.* Mandatory YES

SAVAPI key file *.key Mandatory YES

SAVAPI configuration file savapi.conf Optional YES

Engine VDFs xbv00000.vdf, ...,
xbv00255.vdf

Mandatory YES

APC library and its
dependencies

apcfile.dll Mandatory for APC support YES

APC certificate cacert.crt Mandatory for APC support YES

APC random id generator apc_random_id_
generator.exe

Mandatory for APC support YES

APC hash library apchash.dll Mandatory for APC support YES

SAVAPI OnAccess avgio.dll Mandatory for OnAccess YES

xVDF merge library xvdfmerge.dll Optional YES

9.1.1 The files for the Avira Updater
Description File name on disk Installation Redistributable

Libraries (shared with
SAVAPI)

avupdate_msg.avr Mandatory YES

Main binary avupdate.exe Mandatory YES

Configuration file avupdate-savapi-product.conf Optional YES

Configuration file avupdate-savapi-engine.conf Optional YES

Configuration file avupdate-savapilib-
product.conf

Optional YES

Configuration file avupdate-savapilib-
engine.conf

Optional YES

Product name file productname.dat Optional YES

9.1.2 UNIX
If you have any key files, you can install them in the binaries’ directory. Make sure that the permissions
for the key files are correct.

Anti-malware SDK - Cross Platform (SAVAPI) 94

mailto:oemspport@avira.com
https://oem-portal.avira.com
https://oem.avira.com


9 Appendix

Description File name on disk Installation Redistributable

SAVAPI binary savapi Mandatory YES

SAVAPI library and its
dependencies

libsavapi.so libsavapiclient.so Mandatory YES

Engine binaries ae*.* Mandatory YES

SAVAPI key file *.key Mandatory YES

Engine VDFs xbv00000.vdf, ...,
xbv00255.vdf

Mandatory YES

SAVAPI configuration file savapi.conf Optional YES

APC library and its
dependencies

libapcfile.so Mandatory for APC support YES

APC certificate cacert.crt Mandatory for APC support YES

APC random id generator apc_random_id_ generator Mandatory for APC support YES

APC hash library libapchash.so Optional for APC support YES

xVDF merge library libxvdfmerge.so Optional YES

 The files for the Avira Updater

Description File name on disk Installation Redistributable

Libraries (shared with
SAVAPI)

avupdate_msg.avr Mandatory YES

Main binary avupdate.bin Manatory YES

Configuration file avupdate-savapi-product.conf Optional YES

Configuration file avupdate-savapi-engine.conf Optional YES

Configuration file avupdate-savapilib-
product.conf

Optional YES

Configuration file avupdate-savapilib-
engine.conf

Optionla YES

Product name file productname.dat Optional YES

Anti-malware SDK - Cross Platform (SAVAPI) 95

Europe
Middle East, Africa

Avira
Kaplaneiweg 1
88069 Tettnang, Germany
Tel: +49 7542 5000

Americas

Avira, inc
c/o WeWork, 75 E Santa Clara Street
Suite 600, 6th floor San José
CA 95113 United States

Asia/Pacific and China

Avira Pte Ltd
50 Raffles Place
32-01 Singapore Land Tower
Singapore 048623

Japan

Avira GK
8F Shin-Kokusai Bldg
3-4-1, Marunouchi Chiyoda-ku
Tokyo 100-0005, Japan

© 2023 Avira Operations GmbH. All rights reserved.  Avira. Kaplaneiweg 1, 88069 Tettnang, Germany  oem.avira.com Product and company names mentioned herein are registered trademarks
of their respective companies. Our general terms and conditions of business and license terms can be found online: www.avira.com  May be subject to errors and technical changes. As of: August 2019.

oem.avira.com


	Contents
	General considerations
	Introduction
	General features

	System Requirements
	Limitations
	Binary integrity

	Integrating Anti-malware SDK (SAVAPI)
	Third-party libraries
	Third-party license duties
	Handling of containers/archives

	Anti-malware SDK (SAVAPI) Library
	General description
	Library integration
	OnAccess file scanning

	Library configuration
	File Operation Structure (FOPS)
	What is FOPS?
	How to use FOPS: The SAVAPI_scan call
	Library callbacks

	Logging
	Initialization
	Configuration
	Log-levels

	Logging guidelines
	Malware name generation rules

	Selective file repair
	Steps

	Extracting malware names
	Troubleshooting: "350 Failed to read VDF file"

	File reputation API support
	File Reputation extension caching
	File Reputation extension blackout mechanism
	File Reputation extension hash scanning
	Computing the File Reputation extension hash using the apchash library
	Scanning the hash with Anti-malware SDK (SAVAPI)
	Updating the File Reputation extension hash library
	File Reputation extension scan callback
	Controlling the File Reputation extension scan workflow
	Reporting a file detection

	File Reputation extension quota

	Anti-malware SDK (SAVAPI) OnAccess
	Dependencies
	Object exclusions
	Defining exclusions for file objects
	Defining excluded processes

	Updating OnAccess
	Updater related files
	Anti-malware SDK (SAVAPI) OnAccess ams_setup binary details



	FPC support
	FPC blackout mechanism


	Anti-malware SDK (SAVAPI) Service
	General description
	Integration
	On-demand file scanning
	OnAccess file scanning

	Configuration
	Command line parameters
	Options
	Commands
	Information

	Configuration file options
	Anti-malware SDK (SAVAPI) Service running options
	Connection-related options
	Scan-related options
	Logging-related options

	Protocol
	Response Status Codes
	Requests
	The SCAN command
	SCAN command responses
	Scan keywords
	Update Support
	Other commands
	Other responses



	Exit codes
	Logging
	Initialization
	Configuration
	System logging
	Recommendations
	Issues with the Anti-malware SDK (SAVAPI) Protocol when using a telnet client



	Non-disruptive service update
	Fops plug-in
	Cloud component
	OnAccess file scanning

	Anti-malware SDK (SAVAPI) Client Library
	General description of Anti-malware SDK (SAVAPI) Client Library
	Integration of Anti-malware SDK (SAVAPI) Client Library
	Configuration of Anti-malware SDK (SAVAPI) Client Library
	Logging in Anti-malware SDK (SAVAPI) Client Library
	Extracting malware names

	Installation
	Installation on Windows
	Installing the OnAccess driver
	Installing the Anti-malware SDK (SAVAPI) Service

	Installation on UNIX

	Licensing
	Updating Anti-malware SDK (SAVAPI)
	Mirroring the Updater’s server structure
	Anti-malware SDK (SAVAPI) update structure and modules
	Updater related files
	Introduction to Anti-malware SDK (SAVAPI) update
	Modules of the Anti-malware SDK (SAVAPI) update
	Anti-malware SDK (SAVAPI) update script details
	How to use Anti-malware SDK (SAVAPI) update scripts
	Limitations

	Avira Updater’s configuration parameters
	General parameters
	Directories and files

	Update mode
	Connection settings
	Notification emails

	Avira Updater’s logging
	Avira Updater's return codes
	xVDF files merging
	Merging the xVDF files using the xvdfmerge library
	Updating the xVDF merge library


	Contact information
	Support services
	Contact

	Appendix
	Anti-malware SDK (SAVAPI) binaries
	The files for the Avira Updater
	UNIX
	The files for the Avira Updater






