
26 April 2023

Anti-malware SDK
Library Guide (Unix)



Contents

1 Introduction.................................................................................................3
1.1 Disclaimer........................................................................................................................................ 3

2 Compiling and running the example....................................................... 3
2.1 Compiling the examples..................................................................................................................3
2.2 Running the examples.................................................................................................................... 4

3 SAVAPI Library........................................................................................... 4
3.1 SAVAPI initialization.........................................................................................................................4
3.2 SAVAPI instances............................................................................................................................ 5
3.3 SAVAPI scanning.............................................................................................................................5
3.4 SAVAPI scan callbacks................................................................................................................... 6
3.5 SAVAPI scan options.......................................................................................................................6
3.6 SAVAPI log callback........................................................................................................................ 7

4 Contact information................................................................................... 8
4.1 Support services..............................................................................................................................8
4.2 Contact.............................................................................................................................................8



1 Introduction

1 Introduction

1.1 Disclaimer
The purpose of these simple examples is to show basic functionality of the features as easy as
possible. There are no error checks, no log files, and very few console prints in order to preserve the
simplicity of the examples. Using code from these basic examples "as is", in a production environment
is not recommended. Instead, check the more advanced examples that are safer to use when
implementing SAVAPI.

 Note On UNIX platforms, in order to use native UTF-8 char types, savapi_unix.h must be included
instead of savapi.h.

The SAVAPI Client Library basic examples are split into eight incremental complexity levels:

1. clientlib_basic_init_example - introduces initialization of SAVAPI Client Library; it doesn’t scan
files

2. clientlib_basic_instance_example - introduces the creation of SAVAPI instances; it doesn’t scan
files

3. clientlib_basic_scan_example - introduces scanning of a file using default settings and options,
without callbacks

4. clientlib_basic_scan_status_example - introduces callbacks implementation to check scan result
5. clientlib_basic_scan_options_example - introduces setting of basic scanning options
6. clientlib_basic_scan_callbacks_example - introduces the most important callbacks

implementation
7. clientlib_basic_log_callbacks_example - introduces logging callback
8. clientlib_basic_complete_example - introduces checking of return codes; the safest basic

example to be used in production code

2 Compiling and running the example

2.1 Compiling the examples
CMake is used as the build tool for the SAVAPI examples and must be installed before compiling them.
It allows to generate build files for various platforms and also build them using an installed toolchain.

To build the examples, navigate to an extracted SAVAPI SDK folder and run the commands below.
CMake will detect an available toolchain and a build tool, and then build the examples directly into the
SAVAPI SDK's /bin folder.

Note: It is mandatory to pass to CMake <SAVAPI SDK>/examples folder as a source folder (i.e. "-S ../
examples" in this case).

# mkdir examples_build
# cd examples_build
# cmake -S../examples -DPLATFORM_ARCH=${arch} -DCMAKE_BUILD_TYPE=${type}

Then to build all the examples run:

# cmake --build .

Or to build a specific example pass its name to CMake like this:

# cmake --build . -t lib_file_scan_example

Where:

- arch=[x64|x86|arm64]
- type=[Release|Debug]

Please refer to CMake documentation for more information.

SAVAPI 4 Library Guide 3



3 SAVAPI Library

Build files generated by CMake can be used separately with an IDE (for ex., Visual Studio), nmake,
make etc.

2.2 Running the examples
Because by default, the examples search for some modules that are located in the bin directory, they
must be executed from the bin directory.

Each example can run without arguments (the very basic ones) or will require one or two arguments,
depending on its complexity. By executing an example with no arguments, it will print its usage to the
console.

The possible arguments for basic examples are:

license product id: License product ID, provided by Avira

file to scan: The file to be scanned

# cd /opt/savapi/bin

# ./lib_basic_scan_status_example
SAVAPI Library usage in a basic scan with status answer example program
(c) Avira Operations GmbH & Co. KG 2016

Usage: <./lib_basic_scan_status_example> <license_product_id> <file_to_scan>

# ./lib_basic_scan_status_example 1 /tmp/eicar.com
SAVAPI_initialize succeeded
SAVAPI_create_instance succeeded
        File '/tmp/eicar.com' is infected!
        malware name: Eicar-Test-Signature
        malware info: Contains code of the Eicar-Test-Signature virus
SAVAPI_scan succeeded

3 SAVAPI Library

3.1 SAVAPI initialization
Before most of the SAVAPI functions can be used, SAVAPI must be initialized using
SAVAPI_initialize(). This function takes a single parameter of type SAVAPI_GLOBAL_INIT as
argument.

The needed important members of the SAVAPI_GLOBAL_INIT structure are:

api_major_version: The minimum major API version expected

api_minor_version: The minimum minor API version expected

program_type: License product ID, provided by Avira

engine_dirpath: Directory containing the SAVAPI engine files

vdfs_dirpath: Directory containing Avira Virus Definition (VDF) files

key_file_name: Path to the license key file (HBEDV.KEY) provided by Avira

Create and initialize the structure:

/* Declare a SAVAPI global object and set the required fields
 * (license product id is only needed when scanning) */
SAVAPI_GLOBAL_INIT global_init = {0};
global_init.api_major_version = SAVAPI_API_MAJOR_VERSION;
global_init.api_minor_version = SAVAPI_API_MINOR_VERSION;
global_init.program_type = atoi(argv[1]);

In the basic examples, the license product ID is received as a program argument.

SAVAPI 4 Library Guide 4



3 SAVAPI Library

Also, the engine_dirpath, vdfs_dirpath and key_file_name are not set, so SAVAPI will search
them in the current directory. If they are not located in the current directory, they must be explicitly set
before initializing SAVAPI.

/* Example code */
global_init.engine_dirpath = "/opt/savapi/engine_dir";
global_init.vdfs_dirpath = "/opt/savapi/vdf_dir";
global_init.key_file_name = "/opt/savapi/key_dir/HBEDV.KEY";

After creating the structure, call SAVAPI_initialize():

/* Initialize SAVAPI library */
ret = SAVAPI_initialize(&global_init);

SAVAPI is initialized now, more code can be added after the initialization.

A proxy server can be set for the SAVAPI FPC module. Setting it is optional. It must be done after
initializing SAVAPI, but before creating any SAVAPI instances.

/* Example code */
/* If needed, set a proxy server for the FPC connection */
/* SAVAPI_global_set(SAVAPI_OPTION_G_PROXY, "<your-proxy-here>"); */

Before exiting the program, SAVAPI must be uninitialized.

ret = SAVAPI_uninitialize();

3.2 SAVAPI instances
In order to use SAVAPI scanning, one needs to create at least one SAVAPI instance. A program can
have many instances running at the same time, each instance having its own unique set of options.
Each instance usually has to be attached to a run time “worker thread” in the context of the running
program, and the user is responsible for all thread creation and management.

To create an instance, the user needs to call SAVAPI_create_instance() and retrieve an instance
handle of type SAVAPI_FD. The instance handle is then used in subsequent calls to set options, scan
files, memory and hashes.

/* Declare objects to prepare the instance creation */
SAVAPI_FD instance_handle = NULL;
SAVAPI_INSTANCE_INIT instance_init = {0};

/* Create the instance and return an instance_handle that will be used to set
 * different scanning options and scan files, memory or hashes */
ret = SAVAPI_create_instance(&instance_init, &instance_handle);

All created instances should be destroyed by calling SAVAPI_release_instance().

ret = SAVAPI_release_instance(&instance_handle);

3.3 SAVAPI scanning
Once the instance has been created, it can be used to scan files, memory or hashes by calling
SAVAPI_scan().

/* File to be scanned must be received as second argument */
char *file_to_scan = argv[2];
ret = SAVAPI_scan(instance_handle, file_to_scan);

It is important to note that SAVAPI_scan() does not return until the scan operation is complete.
In order to scan multiple objects at the same time, it is therefore necessary to use threading, along
with multiple SAVAPI instances. Each instance must run in a different thread context. The developer
implementing SAVAPI in his application is responsible for maintaining the multithreaded code that
makes SAVAPI_scan() calls to the SAVAPI instances.

SAVAPI 4 Library Guide 5



3 SAVAPI Library

 Note SAVAPI_scan() does not return the status of the scan (clean or infected) but only a
success or failure code. In order for the user to get more granular results, it is necessary to implement
scan callbacks.

3.4 SAVAPI scan callbacks
SAVAPI uses callbacks during scanning to send information to the user. The callbacks can be
registered by calling SAVAPI_register_callback() and are unique for each instance. All relevant
callbacks must be set on a SAVAPI instance before calling SAVAPI_scan() for that instance.

The most important callback is SAVAPI_CALLBACK_REPORT_FILE_STATUS, which contains
information about the file scanned. If the file is infected, there is additional information available about
the malware.

ret = SAVAPI_register_callback(instance_handle,
      SAVAPI_CALLBACK_REPORT_FILE_STATUS, file_status_callback);

The basic implementation of SAVAPI_CALLBACK_REPORT_FILE_STATUS function is:

/* Triggered after a file is scanned, contains information
 * about the file status (clean, infected etc.) */
static int file_status_callback(SAVAPI_CALLBACK_DATA *data)
{
    SAVAPI_FILE_STATUS_DATA *file_status_data =
      data->callback_data.file_status_data;

    if (file_status_data->scan_answer == SAVAPI_SCAN_STATUS_INFECTED)
    {
        printf("\tFile '%s' is infected!\n", file_status_data->file_info.name);
        printf("\tmalware name: %s\n", file_status_data->malware_info.name);
        printf("\tmalware info: %s\n", file_status_data->malware_info.message);
    }

    return 0;
}

Once a callback has been registered, it must be unregistered by calling
SAVAPI_unregister_callback().

ret = SAVAPI_unregister_callback(instance_handle, 
      SAVAPI_CALLBACK_REPORT_FILE_STATUS, file_status_callback);

Other important callbacks are:

- SAVAPI_CALLBACK_PRE_SCAN - Triggered before the scanning begins. Can be used to create
filters. For example, if the user wishes to scan only .exe files, the user installs a PRE_SCAN
callback. Before any file is scanned, the PRE_SCAN callback is called. If the returned code is success
(SAVAPI_S_OK), the file will be scanned, otherwise it will be skipped.

- SAVAPI_CALLBACK_ARCHIVE_OPEN - Triggered before an archive (e.g. ZIP, RAR, MIME encoded
files etc) is opened. If the returned code is success (SAVAPI_S_OK), the archive will be opened,
otherwise it will be skipped.

- SAVAPI_CALLBACK_PROGRESS_REPORT - Triggered multiple times during a scan operation, when
messages related to the scan progress are available. Useful in a lengthy scan operation on a large
archive or file.

- SAVAPI_CALLBACK_REPORT_ERROR - Triggered on errors encountered during a scan, i.e. damaged
files or archives etc. Also triggered on warnings encountered during a scan. Can be triggered at any
time during the scan.

3.5 SAVAPI scan options
SAVAPI has default scanning options for basic malware but in many cases additional options are
needed for optimal performance. For example, by default SAVAPI will not scan in archives, so
ARCHIVE_SCAN must be enabled. The options are set per instance, so different SAVAPI instances can
have different options set for them.

SAVAPI 4 Library Guide 6



3 SAVAPI Library

The options can be set by calling SAVAPI_set().

/* Enable false positive control */
ret = SAVAPI_set(instance_handle, SAVAPI_OPTION_FPC, "1");

/* Enable archive scanning */
ret = SAVAPI_set(instance_handle, SAVAPI_OPTION_ARCHIVE_SCAN, "1");

/* Set maximum allowed size (in bytes) for any file within an archive */
ret = SAVAPI_set(instance_handle, SAVAPI_OPTION_ARCHIVE_MAX_SIZE, "0");

/* Enable detection for all categories */
ret = SAVAPI_set(instance_handle, SAVAPI_OPTION_DETECT_ALLTYPES, "1");

 Note In order to have the best detection, it is highly recommended to enable the False Positive
Control module (set SAVAPI_OPTION_FPC to "1"). An Internet connection is needed for the FPC
module to work.

Also, by calling SAVAPI_get(), values of some specific options can be obtained.

char buf[BUF_SIZE] = {0};
SAVAPI_SIZE_T buf_size = BUF_SIZE;

/* Get some instance options */
ret = SAVAPI_get(instance_handle, SAVAPI_OPTION_FPC, buf, &buf_size);
printf("False positive control: %s\n", buf);

ret = SAVAPI_get(instance_handle, SAVAPI_OPTION_AVE_VERSION, buf, &buf_size);
printf("Engine version: %s\n", buf);

ret = SAVAPI_get(instance_handle, SAVAPI_OPTION_VDF_VERSION, buf, &buf_size);
printf("VDF version: %s\n", buf);

ret = SAVAPI_get(instance_handle, SAVAPI_OPTION_ARCHIVE_SCAN, buf, &buf_size);
printf("Scan in archives: %s\n", buf);

3.6 SAVAPI log callback
The logging callback is one of the few SAVAPI functions that can be called before the SAVAPI Client
Library is initialized.

The user must implement his own logging callback function, that will be called anytime SAVAPI logs
something. In the example, a log file is created and filled with SAVAPI logging information.

/* Define a structure to be passed as user data to the log callback */
log_user_data_t log_user_data = {0};
log_user_data.log_file = fopen("savapi.log", "w");

/* Set the logging callback function (can be done before SAVAPI_initialize) */
ret = SAVAPI_set_log_callback(&log_callback, SAVAPI_LOG_DEBUG, &log_user_data);

SAVAPI 4 Library Guide 7



4 Contact information

The logging function example below will append the messages received from SAVAPI to the savapi.log
file. SAVAPI will provide the message string, but time-stamping and output formatting are up to the
developer.

/* Triggered when SAVAPI logs a message */
static void log_callback(SAVAPI_LOG_LEVEL log_level,
                         const SAVAPI_TCHAR *message, void *user_data)
{
    /* get the log file handle and write the message
     * received from SAVAPI to the file */
    log_user_data_t *log_user_data = (log_user_data_t*)user_data;

    /* retrieve the local time to be written in the log file */
    time_t local_time = time(NULL);
    struct tm *local_tm = localtime(&local_time);

    fprintf(log_user_data->log_file, "%02d:%02d:%02d %s: %s\n",
            local_tm->tm_hour, local_tm->tm_min, local_tm->tm_sec,
            log_level_to_string(log_level), message);
}

Close the file handle before exiting the program.

/* Close the log file handle */
fclose(log_user_data.log_file);

4 Contact information

4.1 Support services
During evaluation and integration

If you are evaluating or starting to integrate Avira's Technology into your solution, the System
Integration Team will answer your technical questions, from planning the architecture of the integration,
to detailed code-related routines.

To contact the SI Team for technical issues, mailto:si-support@avira.com

After the integration is finalized

As soon as you finalize the integration of Avira's Technology and you release your solution to your
customers, the OEM Integration Support manages all support issues.

To contact the OEM Support Team for technical issues, mailto:oemsupport@avira.com

Partner Portal

For our OEM customers we also provide a login to our Partner Portal with all the latest news and
information about Avira's technology, SDK downloads, and documentation: https://oem-portal.avira.com

4.2 Contact
Address

Avira Operations GmbH

Kaplaneiweg 1

D-88069 Tettnang

Germany

Internet

You can find further information about us and our products on the website: www.avira.com

SAVAPI 4 Library Guide 8

mailto:si-support@avira.com
mailto:oemsupport@avira.com
https://oem-portal.avira.com
https://www.avira.com


Europe
Middle East, Africa

Avira
Kaplaneiweg 1
88069 Tettnang, Germany
Tel: +49 7542 5000

Americas

Avira, inc
c/o WeWork, 75 E Santa Clara Street
Suite 600, 6th floor San José
CA 95113 United States

Asia/Pacific and China

Avira Pte Ltd
50 Raffles Place
32-01 Singapore Land Tower
Singapore 048623

Japan

Avira GK
8F Shin-Kokusai Bldg
3-4-1, Marunouchi Chiyoda-ku
Tokyo 100-0005, Japan

© 2023 Avira Operations GmbH. All rights reserved.  Avira. Kaplaneiweg 1, 88069 Tettnang, Germany  oem.avira.com Product and company names mentioned herein are registered trademarks
of their respective companies. Our general terms and conditions of business and license terms can be found online: www.avira.com  May be subject to errors and technical changes. As of: August 2019.

oem.avira.com


	Contents
	Introduction
	Disclaimer

	Compiling and running the example
	Compiling the examples
	Running the examples

	SAVAPI Library
	SAVAPI initialization
	SAVAPI instances
	SAVAPI scanning
	SAVAPI scan callbacks
	SAVAPI scan options
	SAVAPI log callback

	Contact information
	Support services
	Contact




